Formatting a Paper for Peer Review

The SPE Publications Style Guide provides information on the SPE style for elements in technical papers. However, please note the change related to preferred format for references below.

The paper should be DOUBLE-SPACED, double column, with text in 10-point type.
Please ensure that the following major items are handled according to SPE guidelines:

Paper Number

Be sure that the SPE paper number assigned to your paper is clearly shown on your manuscript and all publications materials.

Authors

List the authors under the title in the order you want them to appear. Include the name and company affiliation of each author. Put SPE after the names of authors who are SPE members. Example: Joe Smith, SPE, Generic Petroleum Co.

Summary

Include a summary of 50 to 100 words at the beginning of the paper.

Headings and Subheads

Make sure that major headings, subheads, and sub-subheads are clearly distinguishable by using the following styles:

First-Level Headings -- 10-point bold on line by itself.
Second-Level Headings -- 10-point bold, period at end, and run into the next paragraph.

Third-Level Headings -- 10-point bold italic, period at end, and run into next paragraph.

Fourth-Level Headings -- 10-point italic, period at end, and run into next paragraph.

References

Please cite references in the text by placing the author's name and year in parentheses; then, include an alphabetical listing of the references at the end of the paper. [Note: this is a change from SPE's previous reference style, which required references to be numbered in the order in which they were cited.]

Numbering Figures and Tables

Number figures and tables (in Arabic, not Roman, numerals) sequentially in the order they are cited in the text. Avoid numbering individual figures as Fig. 11a and Fig. 11b. Instead, make them Fig. 11 and Fig. 12.

Numbering Equations

Number equations sequentially as they appear in the paper. Enclose the equation number in parentheses preceded by a line of dots (see SPE Publications Style Guide © Sec. 8.5.1).

Nomenclature

If symbols for quantities (e.g., p for pressure or q for flow rate) are used in the text, equations, tables, or figures, include a Nomenclature defining them at the end of the text. The Nomenclature should list the symbol, the definition, the units of measure (or
dimensionless), and the dimensions (see SPE Publications Style Guide © Sec. 8.7.4). Also available is the SPE Letter and Computer Symbols Standard which provides a list on commonly used symbols and their definition.

Reference List

Include complete information on all references in the format described in Sec. 8.8 of the SPE Publications Style Guide. Incomplete reference citations may result in your paper being returned for correction and a delay in publication.

Metric Conversion Factors

After the References section, include metric conversion factors for units used (see SPE Publications Style Guide, Sec. 8.10.3). The metric conversion factors should go from customary units to metric units.

Author Biographies

Provide a brief biographical sketch of each author at the end of the paper. For each author, give only the name, title, company or organization, location of the company or organization, work history, and education history. Including an email address is suggested but not required.

Tables and Figures
All tables and figures should be cited sequentially in the text of the paper. They should be grouped at the end of the paper rather than embedded in the text. Please include figure captions in a listing at the end of the text. In addition, please format tables using the Table menu on the MS Word toolbar; tables should not be submitted as images. Figures can be submitted in Word, Excel, or PowerPoint format, or as .tif or .jpg images. Images submitted graphically need to be print-quality (300 dpi) not web-quality (72 px/inch).

Color Figures

Please use color only when necessary. Note: Authors will be charged USD 800 for the first color figure and USD 150 for each additional figure printed in color (with a maximum charge of USD 2,000). You must notify SPE whether you want color figures when you submit your revised manuscript.

Petroleum Engineering Handbook

Petroleum Engineering Handbook

Larry W. Lake, Editor-in-Chief

I General Engineering John R. Fanchi, Editor
II Drilling Engineering Robert F. Mitchell, Editor
III Facilities and Construction Engineering Kenneth E. Arnold, Editor
IV Production Operations Engineering Joe Dunn Clegg, Editor
V Reservoir Engineering and Petrophysics Edward D. Holstein, Editor
VI Emerging and Peripheral Technologies H.R. Warner Jr., Editor
VII Indexes and Standards

Petroleum Engineering Handbook

Larry W. Lake, Editor-in-Chief

U. of Texas at Austin

Volume VII

Indexes and Standards

© Copyright 2007 Society of Petroleum Engineers

All rights reserved. No portion of this book may be reproduced in any form or by any means, including electronic storage and retrieval systems, except by explicit, prior written permission of the publisher except for brief passages excerpted for review and critical purposes.

Printed in the United States of America.

The paper used in this book meets the minimum requirements of ANSI/NSIO Z39.48-1992 (R1997).

ISBN 978-1-55563-124-6 (print)
ISBN 978-1-55563-125-3 (CD)
ISBN 978-1-55563-134-5 (print and CD)
ISBN 978-1-55563-126-0 (Complete 7-Vol. Set, print)
ISBN 978-1-55563-127-7 (Complete 7-Vol. Set, CD)
ISBN 978-1-55563-135-2 (Complete 7-Vol. Set, print and CD)
$0708091011121314 / 987654321$

Society of Petroleum Engineers
222 Palisades Creek Drive
Richardson, TX 75080-2040 USA
http://store.spe.org/
service@spe.org
1.972.952.9393

Contents

Master Author Index 1
Master Subject Index 11
SPE Symbols Standard 103
Overview of the SPE Symbols Standard 103
Basic Symbols in Alphabetical Order 107
Economics Symbols in Alphabetical Order 114
Symbols in Alphabetical Order 116
Subscript Symbols in Alphabetical Order 133
SI Metric Conversion Factors 141
Alphabetical List of Units 142
Conversion Factors for the Vara 150
"Memory Jogger"-Metric Units 151
Tables of Recommended SI Units 153
Some Additional Application Standards 169

SPE Symbols Standard

Overview of the SPE Symbols Standard

Principles of Symbols Selection

Since the original reservoir Symbols Standard was established in 1956, the principles used in the selection of additional symbols have been as follows.

1. (A) Use single letters only for the main letter symbols. This is the universal practice of the American Natl. Standards Inst. (ANSI), the Intl. Organization for Standardization (ISO), and the Intl. Union of Pure and Applied Physics (IUPAP) in more then 20 formal standards adopted by them for letter symbols used in mathematical equations.
(B) Make available single and multiple subscripts to the main letter symbols to the extent necessary for clarity. Multiple letters, such as abbreviations, are prohibited for use as the main symbol (kernel) for a quantity. A few exceptions are some traditional mathematical symbols, such as log, In, and lim. Thus, quantities that are sometimes represented by abbreviations in textual material, tables, or graphs are required in the SPE Symbols Standard to have single-letter kernels. Examples are gas/oil ratio (GOR), bottomhole pressure (BHP), spontaneous potential (SP), and static SP (SSP), which have the following SPE standard symbols: $R, p_{\mathrm{bh}}, E_{\mathrm{SP}}$, and E_{SSP}, respectively.
2. Adopt the letter symbols of original or prior author usage, where not in conflict with Principles 3 and 4.
3. Adopt letter symbols consistent or parallel with the existing SPE Symbols Standard, minimizing conflicts with that Standard.
4. Where pertinent, adopt the symbols already standardized by such authorities as ANSI, ISO, or IUPAP (see Principle 1); minimize conflicts with these standards.
5. Limit the list principally to basic quantities, avoiding symbols and subscripts for combinations, reciprocals, special conditions, etc.
6. Use initial letters of materials, phase, processes, etc., for symbols and subscripts; they are suggestive and easily remembered.
7. Choose symbols that can be readily handwritten, typed, and printed.

Principles of Letter Symbol Standardization

Requirements for Published Quantity.

1. Symbols should be standard where possible. In the use of published symbols, authors of technical works (including textbooks) are urged to adopt the symbols in this and other current standards and to conform to the principles stated here. An author should provide a Nomenclature list in which all symbols are listed and defined. For work in a specialized or developing field, an author may need symbols in addition to those already contained in standards. In such a case, the author should be careful to select simple, suggestive symbols that avoid conflict in the given field and in other closely related special fields. Except in this situation, the author should not introduce new symbols or depart from currently accepted notation.
2. Symbols should be clear in reference. One should not assign different meanings to a given symbol in such a manner as to make its interpretation in a given context ambiguous. Conflicts must be avoided. A listed alternative symbol or a modifying subscript is often available and should be adopted. Any symbol not familiar to the reading public should have its meaning defined. The units should be indicated whenever necessary.
3. Symbols should be easily identified. Because of the many numerals, letters, and signs that are similar in appearance, a writer should be careful in calling for separate symbols that in published form might be confused by the reader. For example, many letters in the Greek alphabet (lower case and
capital) are practically indistinguishable from English letters, and the zero is easily mistaken for the capital O.
4. Symbols should be economical in publication. One should try to keep the cost of publishing symbols at a minimum: no one work should use a great variety of types and special characters; handwriting of inserted symbols, in copy largely typewritten and to be reproduced in facsimile, should not be excessive; and often a complicated expression appears as a component part of a given base. Instead, one may introduce, locally, a single nonconflicting letter to stand for such a complicated component. An explanatory definition should then appear in the immediate context.

Secondary Symbols. Subscripts and superscripts are widely used for a variety of conventional purposes. For example, a subscript may indicate the place of a term in a sequence or matrix; a designated state, point, part, time, or system of units; the constancy of one independent physical quantity among others on which a given quantity depends for its value; or a variable with respect to which the given quantity is a derivative. Likewise, for example, a superscript may indicate the exponent for a power, a distinguishing label, a unit, or a tensor index. The intended sense must be clear in each case. Several subscripts or superscripts, sometimes separated by commas, may be attached to a single letter. A symbol with a superscript such as prime (${ }^{\prime}$) or second (") or a tensor index should be enclosed in parentheses, braces, or brackets before an exponent is attached. So far as logical clarity permits, one should avoid attaching subscripts and superscripts to subscripts and superscripts. Abbreviations, themselves standardized, may appear among subscripts. A conventional sign or abbreviation indicating the adopted unit may be attached to a letter symbol or corresponding numeral. Reference marks, such as numbers in distinctive type, may be attached to words and abbreviations, but not to letter symbols.

Multiple Subscripts-Position Order. The wide variety and complexity of subject matter covered in the petroleum literature make it impossible to avoid use of multiple subscripts with many symbols. To make such usage less confusing, the following guides were used for the order of appearance of the individual letters in multiple subscripts in the symbols list. Use of the same rules is recommended when it becomes necessary to establish a multiple-subscript notation that has not been included in this list.

1. When the subscript r for "relative" is used, it should appear first in subscript order. Examples: $k_{r o}$ and $k_{r g}$.
2. When the subscript i for "injection," "injected," or "irreducible" is used, it should appear first in subscript order (but after r for "relative"). Examples: $B_{i g}$, formation volume factor of injected gas, and $c_{i g}$, compressibility of injected gas.
3. Except for Cases 1 and 2 above (and symbols k_{h} and L_{v}), phase, composition, and system subscripts should generally appear first in subscript order. Examples: $B_{g i}$, initial or original gas FVF; $B_{o i}$, initial or original oil FVF; $C_{\mathrm{O}_{2}}$, initial or original oxygen concentration; $B_{r i}$, initial or original total system formation volume factor; $\rho_{s E}$, density of solid particles making up experimental pack; and $F_{a F}, G_{L p}, G_{w g p}$, and $G_{F i}$.
4. Abbreviation subscripts (such as "ext," "lim," "max," "min"), when applied to a symbol already subscripted, should appear last in subscript order and require that the basic symbol and its initial subscript(s) be first enclosed in parentheses. Examples: $\left(i_{a 1}\right)_{\max }$ and $\left(S_{h r}\right)_{\text {min }}$.
5. Except for Case 4, numerical subscripts should appear last in subscript order. Examples: $q_{o D 3}$, dimensionless oil-production rate during Time Period 3; $p_{R 2}$, reservoir pressure at Time 2; and $\left(i_{a 1}\right)_{\text {max }}$, maximum air-injection rate during Time Period 1.
6. Except for Cases 4 and 5 , subscript D for "dimensionless" usually should appear last in subscript order. Examples: $p_{t D}, q_{o D}$, and $\left(q_{o D 3}\right)_{\text {max }}$.
7. Except for Cases 4 through 6, the following subscripts usually should appear last in subscript order; regions such as bank, burned, depleted, front, swept, and unburned (b, b, d, f, s, and u); separation, differential, and flash ($s p, d$, and f) ; and individual component identification (I or other). Examples: $E_{b D}, R_{s f}$ and $n_{p j}$.

Typography. When appearing as lightfaced letters of the English alphabet, letter symbols for physical quantities and other subscripts and superscripts, whether upper case, lower case, or in small capitals, are
printed in italic (slanted) type. Arabic numerals and letters of other alphabets used in mathematic expressions are normally printed in vertical type. When a special alphabet is required, boldface type is preferred over German, Gothic, or script type. It is important to select a typeface that has italic forms and clearly distinguished upper case, lower case, and small capitals. Typefaces with serifs are recommended.
Remarks. Quantity symbols may be used in mathematical expressions in any way consistent with good mathematical usage. The product of two quantities is indicated by writing $a b$. The quotient may be indicated by writing
$\frac{a}{b}, a / b$, or $a b^{-1}$.
If more than one solidus (/) is used in any algebraic term, parentheses must be inserted to remove any ambiguity. Thus, one may write $(a / b) / c$, or $a / b c$, but not $a / b / c$.

Special Notes.

1. When the mobilities involved are on opposite sides of an interface, the mobility ratio will be defined as the ratio of the displacing phase mobility to the displaced phase mobility, or the ratio of the upstream mobility to the downstream mobility.
2. Abbreviated chemical formulas are used as subscripts for paraffin hydrocarbons: C_{1} for methane, C_{2} for ethane, C_{3} for propane... C_{n} for $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$.
3. Complete chemical formulas are used as subscripts for materials: CO_{2} for carbon dioxide, CO for carbon monoxide, O_{2} for oxygen, N_{2} for nitrogen, etc.
4. The letter R is retained for electrical resistivity in well logging usage. The symbol ρ is to be used in all other cases and is that preferred by ASA.
5. The letter C is retained for electrical conductivity in well logging usage. The symbol σ is to be used in all other cases and is that preferred by ASA.
6. Dimensions: $\mathrm{L}=$ length, $\mathrm{m}=$ mass, $\mathrm{q}=$ electrical charge, $\mathrm{t}=$ time, $\mathrm{T}=$ temperature, $\mathrm{M}=$ money, and $\mathrm{n}=$ amount of substance.
7. Dimensionless numbers are criteria for geometric, kinematic, and dynamic similarity between two systems. They are derived by one of three procedures used in methods of similarity: integral, differential, or dimensional. Examples of dimensionless numbers are Reynolds number, $N_{\text {Re }}$, and Prandtl number, N_{Pr}. For a discussion of methods of similarity and dimensionless numbers, see "Methods of Similarity," by R.E. Schilson, JPT (August 1964) 877-879.
8. The quantity x can be modified to indicate an average or mean value by an overbar, \bar{x}.

Distinctions Between and Descriptions of Abbreviations, Dimensions, Letter Symbols, Reserve Symbols, Unit Abbreviations, and Units

Confusion often arises as to the proper distinctions between abbreviations, dimensions, letter symbols, reserve symbols, unit abbreviations, and units used in science and engineering. SPE has adhered to the following descriptions.

Abbreviations. For use in textual matter, tables, figures, and oral discussions. An abbreviation is a letter or group of letters that may be used in place of the full name of a quantity, unit, or other entity. Abbreviations are not acceptable in mathematical equations.

Dimensions. Dimensions identify the physical nature or the general components of a specific physical quantity. SPE uses seven basic dimensions: mass, length, time, temperature, electrical charge, money, and amount ($\mathrm{m}, \mathrm{L}, \mathrm{t}, \mathrm{T}, \mathrm{q}, \mathrm{M}$, and n).*
Letter Symbols. For use in mathematical equations. A letter symbol is a single letter, modified when appropriate by one or more subscripts, used to represent a specific physical or mathematical quantity in a mathematical equation. A single letter may be used to represent a group of quantities, properly defined. The
same letter symbol should be used consistently for the same generic quantity, with special values being indicated by subscripts or superscripts.
Reserve Symbols. A reserve symbol is a single letter, modified when appropriate by one or more subscripts or superscripts, that can be used as an alternative when two quantities (occurring in some specialized works) have the same standard letter symbol. These conflicts may result from use of standard SPE symbols or subscript designations that are the same for two different quantities, or use of SPE symbols that conflict with firmly established, commonly used notation and signs from the fields of mathematics, physics, and chemistry.

To avoid conflicting designations in these cases, use of reserve symbols, reserve subscripts, and reserve-symbol/reserve-subscript combinations is permitted, but only in cases of symbols conflict. Author preference for the reserve symbols and subscripts does not justify their use.
In making the choice as to which of two quantities should be given a reserve designation, one should attempt to retain the standard SPE symbol for the quantity appearing more frequently in the paper; otherwise, the standard SPE symbol should be retained for the more basic item (temperature, pressure, porosity, permeability, etc.).
Once a reserve designation for a quantity is used, it must be used consistently throughout a paper. Use of an unsubscripted reserve symbol for a quantity requires use of the same reserve symbol designation when subscripting is required. Reversion to the standard SPE symbol or subscript is not permitted with a paper. For larger works, such as books, consistency within a chapter or section must be maintained.
The symbol nomenclature, which is a required part of each work, must contain each reserve notation used, together with its definition.

Unit Abbreviation. A unit abbreviation is a letter or group of letters (for example, cm for centimeter), or in a few cases a special sign, that may be used in place of the name of a unit. The Intl. Organization for Standardization (ISO) and many other national and international bodies concerned with standardization emphasize the special character of these designations and rigidly prescribe the manner in which the unit abbreviations shall be developed and treated.

Units. Units express the system of measurement used to quantify a specific physical quantity. In SPE usage, units have "abbreviations" but do not have "letter symbols." See the SI Metric System of Units and SPE Metric Standard.
*Electrical charge is current times time. ISO uses Mass (m), Length (L), Time (T), Temperature (θ), Electrical current (T), Amount of substance (n), and Luminous Intensity (J).

Basic Symbols in Alphabetical Order

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
a		activity	
a	F_{a}	air requirement	various
a		decline factor nominal	
a	L_{a}, L_{1}	distance between like wells (injection or production) in a row	L
A		amplitude	various
A		atomic weight	m
A	F	Helmboltz function (work function)	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
b	Y	intercept	various
b	f, F	reciprocal formation volume factor, volume at standard conditions divided by volume at reservoir conditions (shrinkage factor)	
b	w	width, breadth, or thickness (primarily in fracturing)	L
B	C	correction term or correction factor (either additive or multiplicative)	
B	F	formation volume factor, volume at reservoir conditions divided by volume at standard conditions	
c	k, κ	compressibility	$\mathrm{Lt}^{2} / \mathrm{m}$
C		capacitance	$\mathrm{q}^{2} \mathrm{t}^{2} / \mathrm{mL}^{2}$
C		capital costs or investments	M
C		coefficient of gas-well backpressure curve	$\mathrm{L}^{3-2 n} \mathrm{t}^{4 n} / \mathrm{m}^{2 n}$
C	n_{C}	components, number of	
C	c, n	concentration	various
C	σ	conductivity (electrical logging)	$\mathrm{tq}^{2} / \mathrm{mL}^{3}$
C	c, n	salinity	various
C	c	specific heat capacity (always with phase or system subscripts)	$\mathrm{L}^{2} / \mathrm{t}^{2} \mathrm{~T}$
C		waterdrive constant	$L^{4} t^{2} / \mathrm{m}$
$C_{f D}$		fracture conductivity, dimensionless	
C_{L}	c_{L}, n_{L}	condensate or natural gas liquids content	various
d		decline factor, effective	
d	D	diameter	L
d	L_{d}, L_{2}	distance between adjacent rows of injection and production wells	L
D		deliverability (gas well)	L^{3} / t
D	y, H	depth	1
D	μ, δ	diffusion coefficient	L^{2} / t
e	i	influx (encroachment) rate	L^{3} / t
$e_{\mathrm{O}_{2}}$	$E_{\mathrm{O}_{2}}$	oxygen utilization	
e^{z}	$\exp z$	exponential function	
E	η, e	efficiency	

Reserve
SPE Letter

Letter Symbol	Symbol	Quantity	Dimensions
English			
E	V	electromotive force	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$
E	U	energy	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
E	Y	modulus of elasticity (Young's modulus)	$\mathrm{M} / \mathrm{Lt}^{2}$
E_{A}	η_{A}, e_{A}	areal efficiency (used in describing results of model studies only): area swept in a model divided by total model reservoir area (see E_{p})	
E_{c}	Φ_{c}	electrochemical component of the SP	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$
E_{k}	Φ_{k}	electrokinetic component of the SP	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$
E_{n}		Euler number	
$\begin{gathered} E_{S P} \\ -E i(-x) \end{gathered}$	$\Phi_{\text {SP }}$	SP (measured SP) (self potential)	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$
		exponential integral, $\int_{x}^{\infty} \frac{e^{-t}}{t}, \mathrm{~d} t, x$ positive	
$E i(x)$		exponential integral, modified	
		$\lim _{\varepsilon \rightarrow 0+}\left(\int_{-x}^{-\varepsilon} \frac{e^{-t}}{t} \mathrm{~d} t+\int^{\infty} \frac{e^{-t}}{t} \mathrm{~d} t\right), x \text { positive }$	
f	F	fraction (such as the fraction of a flow stream consisting of a particular phase)	
f	v	frequency	1/t
f		friction factor	
f		fugacity	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
f_{s}	Q, x	quality (usually of steam)	
F		degrees of freedom	
F	A,R,r	factor in general, including ratios (always with identifying subscripts)	various
F	f	fluid (generalized)	various
F_{R}		formation resistivity factor-equals R_{0} / R_{w} (a numerical subscript to F indicates the value R_{w})	
$F_{W V}$	γ	specific weight	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
g	γ	gradient	various
g		gravity, acceleration of	$\mathrm{L} / \mathrm{t}^{2}$
g_{c}		conversion factor in Newton's second law of motion	
G	g	gas in place in reservoir, total initial	L^{3}
G	g	gas (any gas, including air), always with identifying subscripts	various
G	f_{G}	geometrical factor (multiplier) (electrical logging)	
G	E_{s}	shear modulus	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
G_{L}	g_{L}	condensate liquids in place in reservoir, initial	L^{3}
h	i	enthalpy, specific	$\mathrm{L}^{2} / \mathrm{t}^{2}$
h	h_{h}, h_{T}	heat transfer coefficient, convective	$\mathrm{m} / \mathrm{t}^{3} \mathrm{~T}$
h	d,e	height (other than elevation)	L
h		hyperbolic decline constant (from equation)	
		$q=q_{i}\left(1+\frac{a_{i} t}{h}\right)^{h}$	

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
h	d,e	thickness (general and individual bed)	L
H	I	enthalpy (always with phase or system subscripts)	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
i		injection rate	L^{3} / t
i		interest rate	1/t
i_{R}		rate of return (earning power)	
I		income (net revenue minus expenses)	
I	\boldsymbol{i} (script i), i	current, electric	q/t
I	I_{T}, I_{θ}	heat transfer coefficient, radiation	$\mathrm{m} / \mathrm{t}^{3} \mathrm{~T}$
I	i	index (use subscripts as needed)	
I	i	injectivity index	$L^{4} /$ /m
$\mathcal{J}(z)($ script $I)$		imaginary part of complex number z	
I_{R}	i_{R}	resistivity index (hydrocarbon)-equals R_{t} / R_{0}	
j	i_{R}	reciprocal permeability	1/L ${ }^{2}$
J	j	productivity index	$L^{4} \mathrm{t} / \mathrm{m}$
k	κ	magnetic susceptibility	$\mathrm{mL} / \mathrm{q}^{2}$
k	K	permeability absolute (fluid flow)	L^{2}
k	r, j	reaction rate constant	L/t
k_{h}	λ	thermal conductivity (always with additional phase or system subscripts)	$\mathrm{mL} / \mathrm{t}^{3} \mathrm{~T}$
K	K_{b}	bulk modulus	$\mathrm{m} / \mathrm{Lt}^{2}$
K		coefficient in the equation of the electrochemical component of the SP (spontaneous electromotive force)	$\mathrm{mL}^{2}{ }_{\text {t }}{ }^{2} \mathrm{q}$
K	M	coefficient or multiplier	various
K	d	dispersion coefficient	L^{2} / t
K	$k, F_{\text {eq }}$	equilibrium ratio (y / x)	
$K_{\text {ani }}$	$M_{\text {ani }}$	anisotropy coefficient	
K_{c}	$M_{c}, K_{\text {ec }}$	electrochemical coefficient	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$
K_{R}	M_{R}, a, C	formation resistivity factor coefficient ($F_{R} \phi^{m}$)	
1 n		natural logarithm, base e	
\log		common logarithm, base 10	
$\log _{a}$		logarithm base a	
L	n_{L}	moles of liquid phase	
L_{f}	x_{f}	fracture half-length (specify "in the direction of" when using x_{f})	L
L_{s}	$s_{s}, \mathcal{l}_{s}($ script $l)$	spacing (electrical logging)	L
L_{v}	λ_{v}	latent heat of vaporization	L
$\mathcal{L}(y)(\operatorname{script} L)$		Laplace transform of $y, \int_{0}^{\infty} y(t) e^{-s t} \mathrm{~d} t$	
m	F_{F}	fuel consumption	various
m		mass	m
m		porosity exponent (cementation) (in an empirical relation between F_{R} and ϕ)	
m	$F_{F o}, F_{g o}$	ratio of initial reservoir free-gas volume to initial reservoir oil volume	
m	A	slope	various
M	I	magnetization	m / qt

Reserve
SPE Letter

Letter Symbol	Symbol	Quantity	Dimensions
English			
M	F_{λ}	mobility ratio, general ($\left.\lambda_{\text {displacing }} / \lambda_{\text {displaced }}\right)$	
M		molecular weight	m
M	$m^{\theta_{D}}$	slope, interval transit time vs. density (absolute value)	$t L^{2} / \mathrm{m}$
M		volumetric heat capacity	$\mathrm{m} / \mathrm{Lt}^{2} \mathrm{~T}$
n	N	density (indicating "number per unit volume")	$1 / \mathrm{L}^{3}$
n		exponent of backpressure curve, gas well	
n	μ	index of refraction	
n	N	number (of variables, components, steps, increments, etc.)	
n	n	number (quantity)	
n		saturation exponent	
n		number of compounding periods	1/t
n_{t}	N_{t}	moles, number of, total	
N	n, C	count rate (general)	1/t
N		neutron [usually with identifying subscript(s)]	various
N		number, dimensionless, in general (always with identifying subscripts)	
N	n	oil (always with identifying subscripts)	various
N	$m_{\phi N D}$	slope, neutron porosity vs. density (absolute value)	L^{3} / m
$N_{G R}$	N_{Y}, C_{G}	gamma ray count rate	1/t
N_{R}	N_{F}	fuel deposition rate	$\mathrm{m} / \mathrm{L}^{3} \mathrm{t}$
O		operating expense	various
p	P	pressure	$\mathrm{m} / \mathrm{Lt}^{2}$
p		price	M
P		phases, number of	
P		profit total	M
P_{c}	P_{c}, p_{c}	capillary pressure	$\mathrm{M} / \mathrm{Lt}^{2}$
q	Q	production rate or flow rate	L^{3} / t
Q	q	charge (current times time)	q
Q	q, Φ	heat flow rate	$\mathrm{mL}^{2} / \mathrm{t}^{3}$
Q_{i}	q_{i}	pore volumes of injected fluid, cumulative dimensionless	
$Q_{L t D}$	$Q_{a t D}($ script $l)$	fluid influx function, linear aquifer, dimensionless	
Q_{p}	$Q_{a t D}($ script $l)$	fluids, cumulative produced (where N_{p} and W_{p} are not applicable)	
$Q_{t D}$		fluid influx function, dimensionless, at dimensionless time t_{D}	
Q_{V}	Z_{V}	cation exchange capacity per unit pore volume	
r	R	radius	L
r	R	resistance	$\mathrm{mL}^{2} / \mathrm{tq}^{2}$
R	ρ, r	electrical resistivity (electrical logging)	$\mathrm{ml}^{3} \mathrm{tq}^{2}$
R		gas constant, universal (per mole)	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{~T}$
R	$F_{g}, F_{g o}$	gas/oil ratio, producing	
R	N	molecular refraction	L^{3}

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
$\mathscr{R}(z)($ script $R)$		real part of complex number z	
s	L	displacement	L
s	σ	entropy, specific	$L^{2} / t^{2} \mathrm{~T}$
s		Laplace transform variable	
s	S, σ	skin effect	various
s		standard deviation of a random variable, estimated	
s^{2}		variance of a random variable, estimated	
S	σ_{t}	entropy, total	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{~T}$
S	ρ, s	saturation	
t	τ	time	t
$t_{\text {ma }}($ script $t)$	$\Delta t_{\text {ma }}$	matrix interval transit time	t/L
$t_{1 / 2}$		half-life	t
T	Θ	period	t
T	θ	temperature	T
T	T	transmissivity, transmissibility	various
u	ψ	flux	various
u	ψ	flux or flow rate, per unit area (volumetric velocity)	L/t
U	U_{T}, U_{θ}	heat transfer coefficient, overall	$\mathrm{m} / \mathrm{t}^{3} \mathrm{~T}$
v	V,u	acoustic velocity	L/t
v	v_{s}	specific volume	L^{3} / m
v	V, u	velocity	L/t
V	R, V_{t}, R_{t}	gross revenue ("value"), total	M
V	n_{v}	moles of vapor phase	
V	U	potential difference (electric)	$\mathrm{mL}^{2} / \mathrm{q}^{2}$
V	v	volume	L^{3}
V	f_{V}, F_{V}	volume fraction or ratio (as needed, use same subscripted symbols as for "volumes"; note that bulk volume fraction is unity and pore volume fractions are ϕ)	various
w	z	Arrhenius reaction-rate velocity constant	L^{3} / m
w	m	mass flow rate	m / t
W	w	water (always with identifying subscripts)	various
W	w	water in place in reservoir, initial	L^{3}
W	w, G	weight (gravitational)	$\mathrm{mL} / \mathrm{t}^{2}$
W	w	work	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
x		mole fraction of a component in liquid phase	
\vec{x}		vector of x	
$\overrightarrow{\vec{x}}$		tensor of x	
		dimensionless quantity proportional to x	
X		reactance	$\mathrm{mL}^{2} / \mathrm{tq}^{2}$
y	f	holdup (fraction of the pipe volume filled by a given fluid: y_{o} is oil holdup; y_{w} is water holdup; sum of all holdups at a given level is one)	
y		mole fraction of a component in vapor phase	

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
z	Z	gas compressibility factor (deviation factor) ($z=p V / n R T$)	
z		mole fraction of a component in mixture	
z		valence	
Z		atomic number	
Z	D, h	elevation (height or fluid head) referred to datum	L
Z		impedance	various
Greek			
α	β, γ	angle	
α	m_{α}	attenuation coefficient	1/L
α	a, η_{h}	heat or thermal diffusivity	L^{2} / t
α		reduction ratio or reduction term	
α	a, η_{h}	thermal or heat diffusivity	L^{2} / t
β	γ	bearing, relative	
β	b	thermal cubic expansion coefficient	1/T
γ		Euler's constant $=0.5772$	
γ		gamma ray [usually with identifying subscripts(s)]	various
γ	s, F_{s}	specific gravity (relative density)	
γ	k	specific heat ratio	
γ	ε_{s}	strain, shear	
$\dot{\gamma}$	\dot{e}	shear rate	1/t
δ	Δ	decrement	various
δ		deviation, hole (drift angle)	
δ	F_{d}	displacement ratio	
δ	r_{s}	skin depth (logging)	L
Δ		difference or difference operator, finite $\left(\Delta x=X_{2}-x_{1} \text { or } x_{1}-x_{2}\right)$	
Δr	ΔR	radial distance (increment along radius)	L
ε		dielectric constant	$\mathrm{q}^{2} \mathrm{t}^{2} / \mathrm{mL}^{3}$
ε	e, ε_{n}	strain, normal and general	
η		hydraulic diffusivity (k/ $\phi \subset \mu$ or $\lambda / \phi c$)	L^{2} / t
θ	β, γ	angle	
θ	θ_{V}	strain, volume	
θ	α_{d}	angle of dip	
θ_{c}	Γ_{c}, γ_{c}	contact angle	
λ	C	decay constant ($1 / \tau_{d}$)	1/t
λ		mobility (k / μ)	$\mathrm{L}^{3} \mathrm{t} / \mathrm{m}$
λ		wave length ($1 / \sigma$)	L
μ	ν, σ	Poisson's ratio	
μ	m	azimuth of reference on sonde	
μ	m	magnetic permeability	$\mathrm{mL} / \mathrm{q}^{2}$
v	N	kinematic viscosity	$\mathrm{L}^{2} / \mathrm{t}$
ρ	D	density	$\mathrm{m} / \mathrm{L}^{3}$
ρ	R	electrical resistivity (other than logging)	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
σ	γ	electrical conductivity (other than logging)	various

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
Greek			
σ		microscopic cross section	L^{2}
σ		standard deviation of a random variable	
σ	s	stress, normal and general	$\mathrm{M} / \mathrm{Lt}^{2}$
σ	y, γ	surface tension, interfacial	$\mathrm{m} / \mathrm{t}^{2}$
σ	\tilde{v}	wave number ($1 / \lambda$)	1/L
σ^{2}		variance of a random variable	
Σ	S	cross section, macroscopic	1/L
τ	s_{s}	stress, shear	$\mathrm{m} / \mathrm{Lt}^{2}$
τ	τ_{c}	time constant	t
τ		tortuosity	
$\bar{\tau}$	$\overline{\mathrm{t}}$	lifetime, average (mean life)	t
τ_{d}	t_{d}	decay time (mean life) (1/ λ)	t
ϕ	f, ε	porosity ($V_{b}-V_{s}$)/ V_{b}	
Φ	β_{d}	dip, azimuth of	
Φ	f	potential or potential function	various
ψ		dispersion modulus (dispersion factor)	
Ψ		stream function	various
ω		angular frequency	1/t

Economics Symbols in Alphabetical Order

Letter Symbol	Quantity	Dimensions
English		
C	capital (costs) or investments	M
D	depletion, depreciation, or amortization (all nonreal account entries)	
E	expense, total (except income taxes)	M
i	interest rate	1/t
I	income (net revenue minus expenses)	M
n	number of compounding periods	1/t
p	price	M
P	profit	M
r	royalty	various
R	revenue	M
t	time	t
T	tax on income	various
v	value (economic)	M

Subscripts

$a r$	after royalty
$a t$	after taxes
$b r$	before royalty
$b t$	before taxes
f	future
k	specific period
p	present
$p o$	payout
$p v$	present value
R	rate
u	unit
t	total

Superscript

real*

Examples

C_{k}	capital investment in Period k
$C_{p v}$	investment at present value
E_{u}	expenses per unit
i_{R}	rate of return (earning power)
$I_{b t}$	income before taxes
$I_{p v k}$	income at present value in Period k
$p_{g k}$	price of gas in Period k
p_{k}	price in Period k
$P_{p v a t}$	profit at present value after tax
$P_{v a t k}$	profit at present value after tax in Period k
r_{R}	royalty rate
$t_{\text {poat }}$	payout time, after tax
$t_{p v o b t}$	payout time before tax at present value
T_{k}	tax in Period k
T_{R}	tax rate
V_{p}	net present value (NPV)
$V_{p o a t}$	payout volume, after tax

Symbols in Alphabetical Order

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
,		activity	
a	F_{a}	air requirement	various
a		decline factor, nominal	
a	L_{a}, L_{1}	distance between like wells (injection or projection) in a row	L
a_{E}	$F_{a E}$	air requirement, unit, in laboratory experimental run, volumes of air per unit mass of pack	L^{3} / m
a_{R}	$F_{a R}$	air requirement, unit, in reservoir, volumes of air per unit bulk volume of reservoir rock	
A		amplitude	various
A	S	area	L ${ }^{2}$
A		atomic weight	m
A	S	cross section (area)	L^{2}
A	F	helmholtz function (work function)	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
A_{c}		amplitude, compressional wave	various
A_{r}		amplitude, relative	various
A_{s}		amplitude, shear wave	various
b	W	breadth, width, or (primarily in fracturing) thickness	various
b	Y	intercept	various
b	f, F	reciprocal formation volume factor, volume at standard conditions divided by volume at reservoir conditions (shrinkage factor)	
b	W	width, breadth, or (primarily in fracturing) thickness	L
b_{g}	f_{g}, F_{g}	reciprocal gas formation volume factor	
$b_{g b}$	$f_{g b}, F_{g b}$	reciprocal gas formation volume factor at bubblepoint conditions	
b_{o}	f_{o}, F_{o}	reciprocal oil formation volume factor (shrinkage factor)	
B	C	correction term or correction factor (either additive or multiplicative)	
B	F	formation volume factor, volume at reservoir conditions divided by volume at standard conditions	
B_{g}	F_{g}	formation volume factor, gas	
$B_{g b}$	$F_{g b}$	bubblepoint formation volume factor, gas	
$B_{g b}$	$F_{g b}$	formation volume factor at bubblepoint conditions, gas	
B_{o}	F_{o}	formation volume factor, oil	
$B_{o b}$	$F_{\text {ob }}$	bubblepoint formation volume factor, oil	

[^0]| Letter Symbol | Reserve SPE Letter Symbol | Quantity | Dimensions |
| :---: | :---: | :---: | :---: |
| English | | | |
| $B_{o b}$ | $F_{o b}$ | formation volume factor at bubblepoint conditions, oil | |
| B_{t} | F_{T} | formation volume factor, total (two-phase) | |
| B_{w} | F_{w} | formation volume factor, water | |
| c | k, k | compressibility | $\mathrm{Lt}^{2} / \mathrm{m}$ |
| c_{f} | $k_{f} \kappa_{f}$ | compressibility, formation or rock | $\mathrm{Lt}^{2} / \mathrm{m}$ |
| c_{g} | k_{g}, k_{g} | compressibility, gas | $\mathrm{Lt}^{2} / \mathrm{m}$ |
| c_{o} | k_{o}, κ_{o} | compressibility, oil | $\mathrm{Lt}^{2} / \mathrm{m}$ |
| $c_{p r}$ | $k_{p r}, \kappa_{p r}$ | compressibility, pseudoreduced | |
| c_{w} | k_{w}, κ_{w} | compressibility, water | $\mathrm{Lt}^{2} / \mathrm{m}$ |
| C | | capacitance | $\mathrm{q}^{2} \mathrm{t}^{2} / \mathrm{mL}^{2}$ |
| C | C_{t} | capital investments, summation of all | M |
| C | | coefficient of gas-well backpressure curve | $\mathrm{L}^{3-2 n} \mathrm{t}^{4 n} \mathrm{~m}^{2 n}$ |
| C | n_{C} | components, number of | |
| C | c, n | concentration | various |
| C | σ | conductivity (electrical logging) | $\mathrm{tq}^{2} / \mathrm{mL}^{3}$ |
| C | K | conductivity, other than electrical (with subscripts) | various |
| C | c, n | salinity | various |
| C | c | specific heat (always with phase or system subscripts) | $L^{2} / t^{2} \mathrm{~T}$ |
| C | | waterdrive constant | $L^{4} \mathrm{t}^{2} / \mathrm{m}$ |
| C_{a} | σ_{α} | conductivity, apparent | $\mathrm{tq}^{2} / \mathrm{mL}^{3}$ |
| $C_{C_{1}}$ | $c_{C_{1}}$ | concentration, methane (concentration of other paraffin hydrocarbons would be indicated similarly, $C_{\mathrm{C}_{2}}, C_{\mathrm{C}_{3}}$, etc.) | various |
| $C_{f D}$ | | conductivity, fraction, dimensionless | |
| C_{i} | | capital investment, initial | M |
| C_{k} | | capital investment in period k | M |
| C_{L} | c_{L}, n_{L} | content, condensate or natural gas liquids | various |
| C_{L} | | waterdrive constant, linear aquifer | $L^{4} t^{2} / m$ |
| C_{m} | $c_{m} n_{m}$ | fuel concentration, unit (see symbol m) | various |
| $C_{\mathrm{O}_{2}}$ | $c_{\mathrm{O}_{2}}$ | concentration, oxygen (concentration of other elements or compounds would be indicated similarly, $C_{\mathrm{CO}_{2}}, C_{\mathrm{N}_{2}}$, etc.) | |
| $C_{p v}$ | | investment at present value | M |
| $C_{w g}$ | $c_{w g}, n_{w g}$ | content, wet-gas | various |
| d | | decline factor, effective | |
| d | D | diameter | L |
| d | L_{d}, L_{2} | distance between adjacent rows of injection and production wells | L |
| d_{h} | d_{H}, D_{h} | diameter, hole | L |
| d_{i} | $d_{l,} D_{i}$ | diameter, invaded zone (electrically equivalent) | L |
| \bar{d}_{p} | D_{p} | diameter, mean particle | L |
| D | | deliverability (gas well) | L^{3} / t |

\begin{tabular}{|c|c|c|c|}
\hline Letter Symbol \& Reserve SPE Letter Symbol \& Quantity \& Dimensions

\hline English \& \& \&

\hline D \& \& depletion, depreciation, or amortization (all nonreal account entries) \& various

\hline D \& y, H \& depth \& L

\hline D \& μ, δ \& diffusion coefficient \& L^{2} / t

\hline e \& i \& encroachment or influx rate \& L^{3} / t

\hline e_{g} \& i_{g} \& encroachment or influx rate, gas \& L^{3} / t

\hline e_{o} \& i_{o} \& encroachment or influx rate, oil \& L^{3} / t

\hline $e_{\mathrm{O}_{2}}$ \& $E_{\mathrm{O}_{2}}$ \& oxygen utilization \&

\hline e_{w} \& i_{w} \& encroachment or influx rate, water \& L^{3} / t

\hline e^{z} \& $\exp z$ \& exponential function \&

\hline E \& η, e \& efficiency \&

\hline E \& V \& electromotive force \& $\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$

\hline E \& U \& energy \& $\mathrm{mL}^{2} / \mathrm{t}^{2}$

\hline E \& \& expense, total (except income taxes) \& M

\hline E \& Y \& modulus of elasticity (Young's modulus) \& m / Lt

\hline E_{A}

E \& η_{A}, e_{A} \& efficiency, areal (used in describing results of model studies only): area swept in a model divided by total model reservoir area (see E_{P}) \&

\hline $$
E_{D}
$$ \& \& efficiency, displacement: volume of hydrocarbons (oil or gas) displaced from individual pores or small groups of pores divided by the volume of hydrocarbon in the same pores just prior to \&

\hline $E_{D b}$ \& $\eta_{D b}, e_{D b}$ \& efficiency, displacement, from burned portion of in-situ combustion pattern \&

\hline $E_{D u}$ \& $\eta_{D u}, e_{D u}$ \& efficiency, displacement, from unburned portion of in-situ combustion pattern \&

\hline E_{I}

E \& η_{J}, e_{I} \& efficiency, invasion (vertical): hydrocarbon pore space invaded (affected, contacted) by the injection fluid or heat front divided by the hydrocarbon pore space enclosed in all layers behind the injected fluid or heat front \&

\hline $$
\begin{aligned}
& E_{k} \\
& E_{k}
\end{aligned}
$$ \& Φ_{k} \& electrokinetic component of the SP kinetic energy \& \[

$$
\begin{aligned}
& \mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q} \\
& \mathrm{~mL}^{2} / \mathrm{t}^{2}
\end{aligned}
$$
\]

\hline $$
\begin{gathered}
E_{n} \\
E_{p \mathrm{SP}}
\end{gathered}
$$ \& $\Phi_{\text {sp }}$ \& Euler's number pseudo-SP \& $\mathrm{mL}^{2} / \mathrm{qt}^{2}$

\hline E_{p} \& η_{P}, e_{P} \& efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore space of the reservoir or project \&

\hline E_{R} \& η_{R}, e_{R} \& efficiency, overall reservoir recovery: volume of hydrocarbons recovered divided by volume of hydrocarbons in place at start of project $\left(E_{R}=E_{P} E_{l} E_{D}=E_{V} E_{D}\right)$ \&

\hline $E_{\text {SP }}$ \& $\Phi_{\text {SP }}$ \& SP (measured SP) (self-potential) \& $\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$

\hline
\end{tabular}

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
$E_{\text {SSP }}$	$\Phi_{\text {SSP }}$	SSP (static SP)	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$
E_{u}		expense per unit	M
E_{V}	η_{V}, e_{V}	efficiency, volumetric; product of pattern sweep and invasion efficiencies	
$E_{V b}$	$\eta_{V b}, e_{V b}$	efficiency, volumetric, for burned portion only, in-situ combustion pattern	
-Ei(-x)		exponential integral, $\int_{x}^{\infty} \frac{e^{-t}}{t} \mathrm{~d} t, x$ positive	
$E i(x)$		$\lim _{\varepsilon \rightarrow 0+}\left(\int_{-x}^{-\varepsilon} \frac{e^{-t}}{t} \mathrm{~d} t+\int^{\infty} \frac{e^{-t}}{t} \mathrm{~d} t\right), x \text { positive }$	
f	F	fraction (such as the fraction of a flow stream consisting of a particular phase)	
f	v	frequency	1/t
f		friction factor	
f		fugacity	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
f_{g}	F_{g}	fraction gas	
f_{g}	F_{g}	mole fraction gas, $V /(L+V)$	
f_{L}	$\begin{gathered} F_{L}^{\circ} f_{\ell} \\ (\text { script } \ell) \end{gathered}$	fraction liquid	
f_{L}	$\begin{gathered} F_{L} f_{\ell} \\ (\text { script } \ell \text {) } \end{gathered}$	mole fraction liquid, $L /(L+V)$	
f_{s}	Q,x	quality (usually of steam)	
f_{V}	$f_{V b}, V_{b f}$	fraction of bulk (total) volume	
$f_{s \phi h}$	$\phi_{\text {igfs }}$	fraction of intergranular space ("porosity") occupied by all shales	
$f_{\text {¢s }}{ }^{\text {d }}$	$\phi_{\text {imfsh } d}$	fraction of intermatrix space ("porosity") occupied by nonstructural dispersed shale	
$f_{\phi w}$	$\phi_{\text {igfo }}$	fraction of intergranular space ("porosity") occupied by water	
F		degrees of freedom	
F	f	fluid (generalized)	various
F	Q	force, mechanical	$\mathrm{mL} / \mathrm{t}^{2}$
F		ratio or factor in general (always with identifying subscripts)	
$F_{a F}$		air/fuel ratio	various
F_{B}		factor, turbulence	
F_{R}		formation resistivity factor-equals R_{0} / R_{w} (a numerical subscript to F indicates the value R_{w})	
F_{s}	F_{d}	damage ratio or condition ratio (conditions relative to formation conditions unaffected by well operations)	
$F_{w F}$		water/fuel ratio	various
$F_{\text {wo }}$		water/oil ratio, producing, instantaneous	
$F_{\text {wop }}$		water/oil ratio, cumulative	
$F_{W V}$	γ	specific weight	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
g		acceleration of gravity	$\mathrm{L} / \mathrm{t}^{2}$

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
g	γ	gradient	various
g_{c}		conversion factor in Newton's second law of motion	
g_{G}	g_{g}	gradient, geothermal	T/L
G	F	free energy (Gibbs function)	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
G	g	gas (any gas, including air), always with identifying subscripts	various
G	g	gas in place in reservoir, total initial	L^{3}
G	f_{G}	geometric factor (multiplier) (electrical logging)	
G	E_{s}	shear modulus	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
$G_{\text {an }}$	$f_{\text {Gan }}$	factor, geometric (multiplier), annulus (electrical logging)	
$G_{\text {an }}$	$f_{\text {Gan }}$	geometric factor (multiplier), annulus (electrical logging)	
G_{e}	g_{e}	gas influx (encroachment), cumulative	L^{3}
$G_{F i}$	$g_{F i}$	free-gas volume, initial reservoir $\left(=m N B_{o_{i}}\right)$	L^{3}
$G_{F p}$	$g_{F p}$	free gas produced, cumulative	L^{3}
G_{i}	g_{i}	gas injected, cumulative	L^{3}
G_{i}	$f_{G i}$	geometric factor (multiplier), invaded zone (electrical logging)	L^{3}
G_{L}	g_{L}	condensate liquids in place in reservoir, initial	L^{3}
$G_{L p}$	$g_{L p}$	condensate liquids produced, cumulative	L^{3}
G_{m}	$f_{G m}$	geometric factor (multiplier), mud (electrical logging)	L^{3}
G_{p}	g_{p}	gas produced, cumulative	L^{3}
G_{p}	$f_{G p}$	geometric factor (multiplier), pseudo (electrical logging)	L^{3}
$G_{p a}$	$g_{p a}$	gas recovery, ultimate	L^{3}
$G_{p E}$	$g_{p E}$	gas produced from experimental tube run	L^{3}
G_{t}	$f_{G t}$	geometric factor (multiplier), true (noninvaded zone) (electrical logging)	
$G_{\text {wg }}$	$g_{\text {wg }}$	wet gas produced, cumulative	L^{3}
$G_{x o}$	$f_{\text {Gxo }}$	geometric factor (multiplier), flushed zone (electrical logging)	
h	d,e	bed thickness, individual	L
h	${ }^{i}$	enthalpy, specific	$\mathrm{L}^{2} / \mathrm{t}^{2}$
h	h_{h}, h_{T}	heat-transfer coefficient, convective	$\mathrm{m} / \mathrm{t}^{3} / \mathrm{T}$
h	d,e	height (other than elevation)	L
h		hyperbolic decline constant (from equation)	
		$q=q_{\mathrm{i}} /\left(1+\frac{a_{i} t}{h}\right)^{h}$	
h	d,e	thickness (general and individual bed)	L
$h_{m c}$	$d_{m c}, e_{m c}$	thickness, mud cake	L
h_{n}	d_{n}, e_{n}	thickness, net pay	L
h_{t}	d_{t}, e_{t}	thickness, gross pay (total)	L
H	I	enthalpy (always with phase or system subscripts)	$\mathrm{mL}^{2} / \mathrm{t}^{2}$

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
H_{s}	I_{s}	enthalpy (net) of steam or enthalpy above reservoir temperature	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
i		discount rate	
i		injection rate	L^{3} / t
i		interest rate	1/t
i_{a}		injection rate, air	L^{3} / t
i_{g}		injection rate, gas	L^{3} / t
i_{R}		rate of return (earning power)	
i_{w}		injection rate, water	L^{3} / t
I	\boldsymbol{i} (script i), i	current, electric	q / t
I	\boldsymbol{i} (script $\boldsymbol{i}), i$	electric current	q / t
I	I_{T}, I_{θ}	heat transfer coefficient, radiation	$\mathrm{m} / \mathrm{t}^{3} \mathrm{~T}$
I		income (net revenue minus expenses)	M
I	i	index (use subscripts as needed)	
I	i	injectivity index	$L^{4} \mathrm{t} / \mathrm{m}$
$\mathcal{J}(z)($ script $I)$		imaginary part of complex number z	
$I_{b t}$		income before taxes	M
I_{f}	$i_{F} I_{F}, i_{F}$	fracture index	
$I_{F f}$	$i_{F f}$	free fluid index	
I_{H}	i_{H}	hydrogen index	
$I_{p w k}$		income at present value in period k	M
I_{R}	i_{R}	hydrocarbon resistivity index R_{t} / R_{0}	
I_{s}	i_{s}	injectivity index, specific	$L^{3} \mathrm{t} / \mathrm{m}$
$I_{\text {shGR }}$	$i_{\text {shGR }}$	shaliness gamma ray index, ($\left.\gamma_{\text {log }}-\gamma_{c n}\right) /\left(\gamma_{\text {sh }}-\gamma_{c n}\right)$	
I_{ϕ}	i_{ϕ}	porosity index	
$I_{\phi 1}$	$i_{\phi 1}$	porosity index, primary	
$I_{\phi 2}$	$i_{\phi 2}$	porosity index, secondary	
J	ω	reciprocal permeability	1/L ${ }^{2}$
J	j	productivity index	$\mathrm{L}^{4} \mathrm{t} / \mathrm{m}$
J_{s}	j_{s}	productivity index, specific	$\mathrm{L}^{3} \mathrm{t} / \mathrm{m}$
K	κ	magnetic susceptibility	$\mathrm{mL} / \mathrm{q}^{2}$
K	K	permeability, absolute (fluid flow)	L^{2}
K	r, j	reaction rate constant	L/t
k_{g}	K_{g}	effective permeability to gas	L^{2}
k_{g} / k_{o}	K_{g} / K_{o}	gas/oil permeability ratio	
k_{h}	λ	thermal conductivity (always with additional phase or system subscripts)	
k_{o}	K_{o}	effective permeability to oil	L^{2}
$k_{r g}$	$K_{r g}$	relative permeability to gas	
$k_{\text {ro }}$	$K_{r o}$	relative permeability to oil	
$k_{r w}$	$K_{r w}$	relative permeability to water	
k_{w}	K_{w}	effective permeability to water	L^{2}
k_{w} / k_{o}	K_{w} / K_{o}	water/oil permeability ratio	
K	K_{b}	bulk modulus	$\mathrm{m} / \mathrm{Lt}^{2}$
K		coefficient in the equation of the electrochemical component of the SP (spontaneous electromotive force)	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$
K	M	coefficient or multiplier	various

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
K	d	dispersion coefficient	L^{2} / t
K	$k, F_{\text {eq }}$	equilibrium ratio (y / x)	
K	M	multiplier or coefficient	various
$K_{\text {ani }}$	$M_{\text {ani }}$	anisotropy coefficient	
K_{c}	$M_{c}, K_{\text {ec }}$	electrochemical coefficient	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{q}$
K_{R}	M_{R}, a, C	formation resistivity factor coefficient ($F_{R}{ }^{\text {m }}$)	
1 n		natural logarithm, base e	
\log		common logarithm, base 10	
$\log _{a}$		logarithm, base a	
L	s, ℓ (script l)	distance, length, or length of path	L
L	s, ℓ (script l)	distance, path length, or distance	L
L	n_{L}	liquid phase, moles of	
L	s, ℓ (script l)	path length, length, or distance	L
L_{f}	x_{f}	fracture half-length (specify "in the direction of" when using x_{f})	L
L_{s}	s, ℓ (script l)	spacing (electrical logging)	L
L_{v}	λ_{v}	heat of vaporization, latent	L^{2} / t^{2}
$\mathcal{L}(y)($ script $L)$		transform, Laplace of $y, \int_{0}^{\infty} y(t) e^{-s t} \mathrm{~d} t$	
m		cementation (porosity) exponent (in an empirical relation between F_{R} and ϕ)	
m	F_{F}	fuel consumption	various
m		mass	m
m	$F_{F o}, F_{g o}$	ratio of initial reservoir free-gas volume to initial reservoir oil volume	
m	A	slope	various
m_{E}	$F_{F E}$	fuel consumption in experimental tube run	$\mathrm{m} / \mathrm{L}^{3}$
$m_{E g}$	$F_{\text {FEg }}$	fuel consumption in experimental tube run (mass of fuel per mole of produced gas)	m
k		amortization (annual write-off of unamortized investment at end of year k)	M
m_{R}	$F_{F R}$	fuel consumption in reservoir	$\mathrm{m} / \mathrm{L}^{3}$
M	I	magnetization	m / qt
M	F_{λ}	mobility ratio, general ($\lambda_{\text {displacing }} / \lambda_{\text {displaced }}$)	
M	F_{λ}	mobility ratio, sharp-front approximation $\left(\lambda_{D} / \lambda_{d}\right)$	
M		molecular weight	m
M	m	number of compounding periods (usually per year)	m
M	$m_{\theta D}$	slope, interval transit time vs. density (absolute value)	$\mathrm{tL}^{2} / \mathrm{m}$
M		volumetric heat capacity	$\mathrm{m} / \mathrm{Lt}^{2} \mathrm{~T}$
M_{f}		magnetization, fraction	
M_{L}		molecular weight of produced liquids, moleweighted average	m

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
$M_{\bar{S}}$	$M_{\text {Dd }} M_{\text {su }}$	mobility ratio, diffuse-front approximation $\left[\left(\lambda_{D}+\lambda_{d}\right)_{\text {swept }} /\left(\lambda_{d}\right)_{\text {unswept }}\right]$; mobilities are evaluated at average saturation conditions behind and ahead of front	
M_{t}	$F_{\lambda t}$	mobility ratio, total, $\left.\left[\left(\lambda_{t}\right)_{\text {swepp }} /\left(\lambda_{t}\right)\right)_{\text {unswept }}\right]$; "swept" and "unswept" refer to invaded and uninvaded regions behind and ahead of leading edge of displacement front	
n	N	density (indicating "number per unit volume")	$1 / L^{3}$
n		exponent of backpressure curve, gas well	
n	μ	index of refraction	
n	N	number (of variables, or components, or steps, or increments, etc.)	
n	N	number (quantity)	
n		number of compounding periods	1/t
n		saturation exponent	
n_{j}	N_{j}	moles of component j	
n_{N}		density (number) of neutrons	1/L ${ }^{3}$
$n_{p j}$	$N_{p j}$	moles of component j produced, cumulative	
n_{t}	N_{t}	number of moles, total	
N	n, C	count rate (general)	1/t
N		neutron [usually with identifying subscript(s)]	various
N		number, dimensionless, in general (always with identifying subscripts)	
N	n	oil (always with identifying subscripts)	various
N	n	pump strokes, number of, cycles per unit of time	
N	$m_{\theta N D}$	slope, neutron porosity vs. density (absolute value)	L^{3} / m
N_{e}		oil influx (encroachment), cumulative	L^{3}
$N_{G R}$	N_{γ}, C_{G}	gamma ray count rate	1/t
N_{i}	n_{i}	oil in place in reservoir, initial	L^{3}
N_{N}	N_{n}, C_{N}	neutron count rate	1/t
N_{p}	n_{p}	oil produced, cumulative	L^{3}
$N_{p a}$	$n_{p a}$	oil recovery, ultimate	L^{3}
N_{R}	N_{F}	fuel deposition rate	$\mathrm{m} / \mathrm{L}^{3} \mathrm{t}$
$N_{\text {Re }}$		Reynolds number (dimensionless number)	
p	P	pressure	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
p		price	M
p_{a}	P_{a}	pressure, atmospheric	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
p_{b}	p_{s}, P_{s}, P_{b}	pressure, bubblepoint (saturation)	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{\text {bh }}$	$P_{\text {bh }}$	pressure, bottomhole	$\mathrm{m} / \mathrm{Lt}^{2}$
p_{c}	P_{c}	pressure, critical	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{c f}$	$P_{c f}$	pressure, casing flowing	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{\text {cs }}$	$P_{c s}$	pressure, casing static	$\mathrm{m} / \mathrm{Lt}^{2}$
p_{d}	P_{d}	pressure, dewpoint	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
p_{D}	P_{D}	pressure, dimensionless	
$p_{\text {e }}$	P_{e}	pressure, external boundary	$\mathrm{m} / \mathrm{Lt}^{2}$

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
$p_{\text {ext }}$	$P_{\text {ext }}$	pressure, extrapolated	$\mathrm{m} / \mathrm{Lt}^{2}$
p_{f}	P_{f}	pressure, front or interface	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
$p_{g k}$		price of gas in period k	M
p_{i}	P_{i}	pressure, initial	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{\text {iwf }}$	$P_{i w f}$	pressure, bottomhole flowing, injection well	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{\text {iws }}$	$P_{\text {iws }}$	pressure, bottomhole static, injection well	$\mathrm{m} / \mathrm{Lt}^{2}$
p_{k}		price in period k	M
$p_{\text {pc }}$	$P_{\text {pc }}$	pressure, pseudocritical	$\mathrm{m} / \mathrm{L}^{2}$
$p_{\text {pc }}$	$P_{\text {pc }}$	pseudocritical pressure	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{p r}$	$P_{p r}$	pressure, pseudoreduced	
p_{r}	P_{r}	pressure, reduced	
$p_{s c}$	$P_{s c}$	pressure, standard conditions	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{\text {sp }}$	$P_{\text {sp }}$	pressure, separator	$\mathrm{m} / \mathrm{Lt}^{2}$
p_{t} D	$P_{t D}$	pressure function, dimensionless, at dimensionless time t_{D}	
$p_{t f}$	$P_{t f}$	pressure, tubing flowing	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{\text {ts }}$	$P_{t s}$	pressure, tubing static	$\mathrm{m} / \mathrm{Lt}^{2}$
p_{w}	P_{w}	pressure, bottomhole general	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{w f}$	$P_{w f}$	pressure, bottomhole flowing	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{\text {ws }}$	$P_{\text {ws }}$	pressure, bottomhole static	$\mathrm{m} / \mathrm{Lt}^{2}$
$p_{\underline{w s}}$	$P_{w s}$	pressure, bottomhole, at any time after shut-in	$\mathrm{m} / \mathrm{Lt}^{2}$
p	\bar{P}	average pressure	$\mathrm{m} / \mathrm{Lt}^{2}$
p	\bar{P}	pressure, average or mean	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
\bar{p}_{R}	\bar{P}_{R}	pressure, reservoir average	$\mathrm{m} / \mathrm{Lt}{ }^{2}$
P		phases, number of	
P		profit	M
P_{c}	P_{C}, p_{C}	capillary pressure	$\mathrm{m} / \mathrm{Lt}^{2}$
$P_{\text {pvat }}$		profit at present value after tax	M
$P_{\text {pvatk }}$		profit at present value after tax in period k	M
q	Q	production rate or flow rate	L^{3} / t
q_{a}	Q_{a}	production rate at economic abandonment	L^{3} / t
$q_{\text {dh }}$	$q_{w f} q_{\text {DH, }} Q_{\text {dh }}$	volumetric flow rate downhole	L^{3} / t
q_{D}	Q_{D}	production rate, dimensionless	
q_{g}	Q_{g}	production rate, gas	L^{3} / t
q_{g} D	$Q_{g D}$	production rate, gas dimensionless	
q_{i}	Q_{i}	production rate at beginning of period	L^{3} / t
q_{0}	Q_{o}	production rate, oil	L^{3} / t
$q_{o D}$	$Q_{o D}$	production rate, oil, dimensionless	
$q_{\bar{p}}$	$Q_{\bar{p}}$	production rate or flow rate at mean pressure	L^{3} / t
q_{s}	Q_{s}	segregation rate (in gravity drainage)	L^{3} / t
$q_{s c}$	$q_{\sigma}, Q_{s c}$	surface production rate	L^{3} / t
$q_{s c}$	$q_{\sigma}, Q_{s c}$	volumetric flow rate, surface conditions	L^{3} / t
q_{w}	Q_{w}	production rate, water	L^{3} / t
$q_{w D}$	$Q_{w D}$	production rate, water, dimensionless	
\bar{q}	\bar{Q}	production rate or flow rate, average	L^{3} / t
Q	Q	charge	${ }_{\text {q }}$
Q	q, Φ	heat flow rate	$\mathrm{mL}^{2} / \mathrm{t}^{3}$

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
$\begin{gathered} \text { English } \\ Q_{i} \end{gathered}$	q_{i}	pore volumes of injected fluid, cumulative, dimensionless	$\mathrm{mL}^{2} / \mathrm{t}^{3}$
$Q_{L t D}$	$Q_{t i D}($ script $l)$	influx function, fluid, linear aquifer, dimensionless	
Q_{p}	$Q_{t t D}($ script $l)$	fluids, cumulative produced (where N_{p} and W_{p} are not applicable)	
Q_{p}		produced fluids, cumulative (where N_{p} and W_{p} are not applicable)	L^{3}
$Q_{t D}$		fluid influx function, dimensionless, a dimensionless time t_{D}	
Q_{V}	Z_{V}	cation exchange capacity per unit pore volume	
r	R	radius	L
r	R	resistance	$\mathrm{ML}^{2} / \mathrm{tq}^{2}$
r		royalty	various
r_{d}	R_{d}	drainage radius	L
r_{D}	R_{D}	radius, dimensionless	
r_{e}	R_{e}	external boundary radius	L
r_{H}	R_{H}	hydraulic radius	L
r_{R}		royalty rate	various
r_{s}	R_{s}	radius of well damage or stimulation (skin)	L
r_{w}	R_{w}	well radius	L
$r_{w s}$	$R_{\text {wa }}$	radius of wellbore, apparent or effective (includes effects of well damage or stimulation)	L
R	ρ, r	electrical resistivity (electrical logging)	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
R		gas constant, universal (per mole)	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{~T}$
R	$F_{g}, F_{g o}$	gas/oil ratio, producing	
R	N	molecular refraction	L^{3}
R		reaction rate	$\mathrm{m} / \mathrm{L}^{2}$
R		revenue	M
$\mathscr{R}(z)($ script $R)$		real part of complex number z	
R_{a}	ρ_{a}, r_{a}	apparent resistivity	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
R_{F}	$F_{g F}, F_{g o F}$	free gas/oil ratio, producing (free-gas volume/oil volume)	
R_{i}	ρ_{i}, r_{i}	invaded zone resistivity	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
R_{m}	ρ_{m}, r_{m}	mud resistivity	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
$R_{m c}$	$\rho_{m c} r_{m c}$	mudcake resistivity	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
$R_{m f}$	$\rho_{m f} r_{m f}$	mud-filtrate resistivity	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
R_{p}	$F_{g p}, F_{g o p}$	cumulative gas/oil ratio	
R_{s}	$F_{g s}, F_{g o s}$	solution gas/oil ratio (gas solubility in oil)	
$R_{s b}$	$F_{g s b}$	solution gas/oil ratio at bubblepoint conditions	
$R_{s h}$	$\rho_{s l h} r_{\text {sh }}$	shale resistivity	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
$R_{s i}$	$F_{g s i}$	solution gas/oil ratio, initial	
$R_{s w}$		gas solubility in water	
R_{t}	ρ_{t}, r_{t}	true formation resistivity	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
R_{w}	ρ_{w}, r_{w}	water resistivity	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
$\begin{gathered} \text { English } \\ R_{x o} \end{gathered}$	$\rho_{x o}, r_{x o}$	flushed-zone resistivity (that part of the invaded zone closest to the wall of the hole, where flushing has been maximum)	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
R_{z}	ρ_{z}, r_{z}	apparent resistivity of the conductive fluids in an invaded zone (caused by fingering)	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
R_{0}	ρ_{0}, r_{0}	formation resistivity when 100% saturated with water of resistivity R_{w}	$\mathrm{mL}^{3} / \mathrm{tq}^{2}$
S		Laplace transform variable	
S	L	displacement	L
S	Σ	entropy, specific	$L^{2} / t^{2} \mathrm{~T}$
S	S, σ	skin effect	various
S		standard deviation of a random variable, estimated	
s^{2}		variance of a random variable, estimated	
S	σ_{t}	entropy, total	$\mathrm{mL}^{2} / \mathrm{t}^{2} \mathrm{~T}$
S	ρ, s	saturation	
S	s, σ	storage or storage capacity	various
$S_{f D}$	S_{D}	dimensionless fracture storage capacity	
S_{g}	ρ_{g}, s_{g}	gas saturation	
$S_{g c}$	$\rho_{g c} S_{g c}$	gas saturation, critical	
$S_{g r}$	$\rho_{g r}, S_{g r}$	gas saturation, residual	
S_{h}	ρ_{h}, S_{h}	saturation, hydrocarbon	
$S_{h r}$	$\rho_{h r}, S_{h r}$	residual hydrocarbon saturation	
$S_{i w}$	$\rho_{i w}, s_{i w}$	irreducible (interstitial or connate) water saturation	
S_{L}	ρ_{L}, S_{L}	liquid saturation, combined total	
S_{o}	ρ_{o}, S_{o}	oil saturation	
$S_{\text {og }}$	$\rho_{o g}, S_{o g}$	gas-cap interstitial-oil saturation	
$S_{\text {or }}$	$\rho_{o r}, S_{o r}$	residual oil saturation	
S_{w}	ρ_{w}, S_{w}	water saturation	
$S_{w c}$	$\rho_{w c} s_{w c}$	critical water saturation	
$S_{w g}$	$\rho_{w g} s_{w g}$	interstitial-water saturation in gas cap	
$S_{w i}$	$\rho_{w i} S_{w i}$	initial water saturation	
$S_{\text {wo }}$	$S_{w b}$	interstitial-water saturation in oil band	
$S_{w r}$	$\rho_{w r}, S_{w r}$	residual water saturation	
T	,	time	t
$\prime($ script t)	Δt	interval transit time	t/L
t_{d}	τ_{d}	time, delay	t
$t_{d N}$		decay time, neutron (neutron mean life)	t
t_{D}	τ_{D}	time, dimensionless	
$t_{D m}$	$\tau_{D m}$	time, dimensionless at condition m	
ma (script t)	$\Delta t_{\text {ma }}$	matrix interval transit time	t/L
t_{N}	τ_{N}, t_{n}	neutron lifetime	1/t
t_{p}	τ_{p}	time well was on production prior to shut-in, equivalent (pseudotime)	t
$t_{\text {poat }}$		payout time, after tax	t
$t_{\text {pypobt }}$		payout time, before tax at present value	t
t_{s}	τ_{s}	time for stabilization of a well	t

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English $s_{s}($ script $t)$	$\Delta t_{s h}$	shale interval transit time	t/L
t_{1}	τ_{1}	relaxation time, proton thermal	t
$t_{1 / 2}$		half-life	t
t_{2}	τ_{2}	relaxation time, free-precession decay	t
T	Θ	period	t
T		tax on income	various
T	θ	temperature	T
T	T	transmissivity, transmissibility	various
$T_{b h}$	$\theta_{B H}$	bottomhole temperature	T
T_{c}	θ_{c}	critical temperature	T
T_{f}	θ_{f}	formation temperature	T
T_{k}		tax in period k	various
$T_{p r}$	$\theta_{p r}$	pseudoreduced temperature	T
T_{r}	θ_{r}	reduced temperature	
T_{R}	θ_{R}	reservoir temperature	T
T_{R}		tax rate	various
$T_{s c}$	$\theta_{s c}$	temperature, standard conditions	T
In	Ψ	flux	various
u	Ψ	flux or flow rate, per unit area (volumetric velocity)	L/t
u	Ψ	superficial phase velocity (flux rate of a particular fluid phase flowing in pipe; use appropriate phase subscripts)	
U	U_{T}, U_{θ}	heat transfer coefficient, overall	$\mathrm{m} / \mathrm{t}^{3} \mathrm{~T}$
v	V,u	acoustic velocity	L/t
v	v_{s}	specific volume	L^{3} / m
v		value (economic)	M
v	V, u	velocity	L/t
v_{b}	V_{b}, u_{b}	burning-zone advance rate (velocity of)	L/t
v_{p}		net present value (NPV)	M
V	n_{v}	moles of vapor phase	
V	U	potential difference (electric)	$\mathrm{mL}^{2} / \mathrm{qt}^{2}$
V	v	volume	L^{3}
V	$f_{v} F_{v}$	volume fraction or ratio (as needed, use same subscripted symbols as for "volumes"; note that bulk volume fraction is unity and pore volume fractions are ϕ)	various
V_{b}	v_{b}	bulk volume	L^{3}
$V_{b E}$	$v_{b E}$	bulk volume of pack burned in experimental tube run	L^{3}
$V_{b p}$	$v_{b p}$	volume at bubblepoint pressure	L^{3}
V_{e}	$V_{p e}, \nu_{e}$	volume, effective pore	L^{3}
$V_{g r}$	$v_{g r}$	volume, grain (volume of all formation solids except shales)	L^{3}
$V_{i g}$	$v_{i g}$	volume, intergranular (volume between grains; consists of fluids and all shales) $\left(V_{\mathrm{v}}-V_{g r}\right)$	
$V_{i m}$	$v_{\text {im }}$	volume, intermatrix (consists of fluids and dispersed shale) $\left(V_{b}-V_{m a}\right)$	L^{3}

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
V_{M}	v_{m}	molal volume (volume per mole)	L^{3}
$V_{\text {ma }}$	$v_{m a}$	matrix (framework) volume (volume of all formation solids except dispersed clay or shale)	L^{3}
$V_{\text {ma }}$	$v_{\text {ma }}$	volume, matrix (framework)(volume of all formation solids except dispersed shale)	L^{3}
V_{p}	v_{p}	pore volume ($V_{b}-V_{s}$)	L^{3}
$V_{p D}$	$v_{p D}$	pore volume, dimensionless	
$V_{\text {poat }}$	$v_{p D}$	payout volume, after tax	L^{3}
$V_{R b}$		volume of reservoir rock burned	L^{3}
$V_{R u}$		volume of reservoir rock unburned	L^{3}
V_{s}	v_{s}	volume, solids(s) (volume of all formation solids)	L^{3}
$V_{\text {sh }}$	$v_{s h}$	volume, shale(s)(volume of all shales: structural and dispersed)	L^{3}
$V_{\text {shd }}$	$\nu_{\text {shd }}$	volume, shale, dispersed	L^{3}
$V_{\text {shs }}$	$v_{\text {shs }}$	volume, shale, structural	L^{3}
w	z	Arrhenius reaction-rate velocity constant	L^{3} / m
w	m	mass flow rate	m/t
w	m	rate, mass flow	m / t
W	w	water (always with identifying subscripts)	various
W	w	water in place in reservoir, initial	L^{3}
W	w, G	weight (gravitational)	$\mathrm{mL} / \mathrm{t}^{2}$
W	w	work	$\mathrm{mL}^{2} / \mathrm{t}^{2}$
W_{e}	w_{e}	water influx (encroachment), cumulative	L^{3}
W_{i}	w_{i}	water injected, cumulative	L^{3}
W_{p}	w_{p}	water produced, cumulative	L^{3}
x		mole fraction of a component in liquid phase	
\vec{x}		vector of x	
$\overrightarrow{\vec{x}}$		tensor of x	
\bar{x}		mean value of a random variable, x, estimated	
X		reactance	$\mathrm{ML}^{2} / \mathrm{tq}^{2}$
y	f	holdup (fraction of the pipe volume filled by a given fluid: y_{o} is oil holdup; y_{w} is water holdup; sum of all holdups at a given level is 1)	
y		mole fraction of a component in a vapor phase	
z	Z	gas compressibility factor (deviation factor) ($z=p V / n R T$)	
z		mole fraction of a component in mixture	
z		valence	
$Z_{\bar{p}}$	$Z_{\bar{p}}$	gas deviation factor (compressibility factor) at mean pressure	
Z		atomic number	
Z	D, h	elevation referred to datum	L
Z	D, h	height, or fluid head or elevation referred to a datum	L
Z		impedance	various

$\frac{\text { Letter Symbol }}{\text { English }}$	Reserve Z_{a}	SPE Letter Symbol	Quantity

Greek

α	β, γ	angle	
α	M_{α}	attenuation coefficient	1/L
α	a, η_{h}	heat or thermal diffusivity	L^{2} / t
α		reduction ratio or reduction term	
α	a, η_{h}	thermal or heat diffusivity	L^{2} / t
$\alpha_{S P_{s h}}$		reduction ratio, SP , caused by shaliness	
β	γ	bearing, relative	
β	b	thermal cubic expansion coefficient	1/T
γ		gamma ray [usually with identifying subscript(s)]	various
γ	s, F_{s}	specific gravity (relative density)	
γ	k	specific heat ratio	
γ	ε_{s}	strain, shear	
$\dot{\gamma}$	\dot{e}	shear rate	1/t
γ_{g}	$s_{g}, F_{g s}$	specific gravity, oil	
γ_{w}	$s_{w}, F_{w s}$	specific gravity, water	
δ	Δ	decrement	various
δ		deviation, hole (drift angle)	
δ	F_{d}	displacement ratio	
δ		drift angle, hole (deviation)	
δ	r_{s}	skin depth (logging)	L
$\delta_{o b}$	$F_{\text {dob }}$	displacement ratio, oil from burned volume, volume per unit volume of burned reservoir rock	
$\delta_{o u}$	$F_{\text {dou }}$	displacement ratio, oil from unburned volume, volume per unit volume of unburned reservoir rock	
$\delta_{w b}$	$F_{d w b}$	displacement ratio, water from burned volume, volume per unit volume of burned reservoir rock	
Δ		difference or difference operator, finite $\left(\Delta x=x_{2}-x_{1} \text { or } x_{1}-x_{2}\right)$	
ΔG_{e}	Δg_{e}	gas influx (encroachment) during an interval	L^{3}
ΔG_{i}	Δg_{i}	gas injected during an interval	L^{3}
ΔG_{p}	Δg_{p}	gas produced during an interval	L^{3}
ΔN_{e}	Δn_{e}	oil influx (encroachment) during an interval	L^{3}
ΔN_{p}	Δn_{p}	oil produced during an interval	L^{3}
Δr	ΔR	radial distance (increment along radius)	L
$\Delta t_{w f}$	$\Delta \tau_{w f}$	drawdown time (time after well is opened to production) (pressure drawdown)	t
$\Delta t_{w s}$	$\Delta \tau_{w s}$	buildup time; shut-in time (time afterwell is shut in) (pressure buildup, shut-in time)	t
ΔW_{e}	Δw_{e}	water influx (encroachment) during an interval	L^{3}
ΔW_{i}	Δw_{i}	water injected during an interval	L^{3}
ΔW_{p}	Δw_{p}	water produced during an interval	L^{3}

Reserve
SPE Letter

Letter Symbol	Symbol	Quantity	Dimensions
Greek		dielectric constant	$\mathrm{q}^{2} \mathrm{t}^{2} / \mathrm{mL}^{3}$
ε	e, ε_{n}	strain, normal and general	
η		hydraulic diffusivity ($k / \phi \subset \mu$ or $\lambda / \phi c$)	L^{2} / t
θ	β, γ	angle	
θ	θ_{V}	strain, volume	
Θ	α_{d}	angle of dip	
Θ_{a}	$\alpha_{d a}$	dip, apparent angle of	
Θ_{c}	Γ_{c}, γ_{c}	contact angle	
λ	C	decay constant $\left(1 / \tau_{d}\right)$	1/t
λ		mobility (k / μ)	$L^{3} \mathrm{t} / \mathrm{m}$
λ		wavelength($1 / \sigma$)	L
λ_{g}		mobility, gas	$\mathrm{L}^{3} \mathrm{t} / \mathrm{m}$
λ_{0}		mobility, oil	$\mathrm{L}^{3} \mathrm{t} / \mathrm{m}$
λ_{t}	Λ	mobility, total, of all fluids in a particular region of the reservoir [e.g., $\left(\lambda_{o}+\lambda_{g}+\lambda_{w}\right)$]	$L^{3} \mathrm{t} / \mathrm{m}$
λ_{w}		mobility, water	$L^{3} \mathrm{t} / \mathrm{m}$
μ	M	azimuth of reference on sonde	
μ	m	magnetic permeability	$\mathrm{mL} / \mathrm{q}^{2}$
μ		mean value of a random variable	
μ	v, σ	Poisson's ratio	
μ	η	viscosity, dynamic	m / Lt
μ_{a}	η_{a}	viscosity, air	m / Lt
μ_{c}		chemical potential	
μ_{g}	$\eta{ }_{g}$	viscosity, gas	m / Lt
$\mu_{g a}$	$\eta_{g a}$	viscosity, gas, at 1 atm	m / Lt
μ_{o}	η_{0}	viscosity, oil	m / Lt
$\mu_{\bar{p}}$	$\eta \bar{p}$	viscosity at mean pressure	m / Lt
μ_{w}	η_{w}	viscosity, water	m / Lt
v	N	kinematic viscosity	$\mathrm{L}^{2} / \mathrm{t}$
v	N	viscosity, kinematic	$\mathrm{L}^{2} / \mathrm{t}$
ρ	D	density	$\mathrm{m} / \mathrm{L}^{3}$
ρ	R	resistivity, electrical (other than logging)	$\mathrm{mL}^{3} \mathrm{tq}^{2}$
ρ_{a}	D_{a}	density, apparent	$\mathrm{m} / \mathrm{L}^{3}$
ρ_{b}	D_{b}	density, bulk	$\mathrm{m} / \mathrm{L}^{3}$
ρ_{f}	D_{f}	density, fluid	$\mathrm{m} / \mathrm{L}^{3}$
ρ_{F}	D_{F}	density, fuel	$\mathrm{m} / \mathrm{L}^{3}$
ρ_{g}	D_{g}	density, gas	$\mathrm{m} / \mathrm{L}^{3}$
$\rho_{\text {ma }}$	$D_{m a}$	density, matrix (solids, grain)	$\mathrm{m} / \mathrm{L}^{3}$
ρ_{o}	D_{o}	density, oil	$\mathrm{m} / \mathrm{L}^{3}$
$\rho_{s E}$	$D_{s E}$	density of solid particles making up experiment pack	$\mathrm{m} / \mathrm{L}^{3}$
ρ_{t}	D_{t}	density, true	$\mathrm{m} / \mathrm{L}^{3}$
ρ_{w}	D_{w}	density, water	$\mathrm{m} / \mathrm{L}^{3}$
$\rho_{x o}$	$D_{x o}$	density, flushed zone	$\mathrm{m} / \mathrm{L}^{3}$
$\bar{\rho}_{L}$	\bar{D}_{L}	density of produced liquid, weight-weighted average	$\mathrm{m} / \mathrm{L}^{3}$
σ	γ	conductivity, electrical (other than logging)	various
σ		cross section, microscopic	1/L
σ	s	cross section of a nucleus, microscopic	L ${ }^{2}$

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
Greek			
σ	y, γ	interfacial surface tension	$\mathrm{m} / \mathrm{t}^{2}$
σ		microscopic cross section	L^{2}
σ		standard deviation of a random variable	
σ	s	stress, normal and general	$\mathrm{m} / \mathrm{Lt}^{2}$
σ	y, γ	surface tension, interfacial	$\mathrm{m} / \mathrm{t}^{2}$
σ	$\tilde{\nu}$	wave number ($1 / \lambda$)	1/L
σ^{2}		variance of a random variable	
Σ	S	cross section, macroscopic	1/L
Σ		summation (operator)	
τ	s_{s}	stress, shear	$\mathrm{m} / \mathrm{Lt}^{2}$
τ	τ_{c}	time constant	t
τ_{d}	t_{d}	decay time (mean life) (1/ λ)	t
τ_{d}	$t_{d t}$	mean life (decay time) (1/ $)$	t
τ_{e}		tortuosity, electric	
τ_{H}		hydraulic tortuosity	
τ_{H}		tortuosity, hydraulic	
$\bar{\tau}$	\bar{t}	lifetime, average (mean life)	t
ϕ	f, ε	porosity ($\left.V_{b}-V_{s}\right) / V_{b}$	
ϕ_{a}	f_{a}, ε_{a}	porosity, apparent	
ϕ_{e}	f_{e}, ε_{e}	porosity, effective ($V_{p e} / V_{b}$)	
ϕ_{E}	f_{E}, ε_{E}	porosity of experimental pack	
ϕ_{h}	f_{h}, ε_{h}	porosity, hydrocarbon-filled, fraction or percent of rock bulk volume occupied by hydrocarbons	
$\phi_{i g}$	$f_{i g}, \varepsilon_{i g}$	"porosity" (space), intergranular $\left(V_{b}-V_{g r}\right) / V_{b}$	
$\phi_{\text {im }}$	$f_{\text {im }}, \varepsilon_{i m}$	"porosity" (space), intermatrix $\left(V_{b}-V_{m a}\right) / V_{b}$	
$\phi_{\text {ne }}$	$f_{n e}, \varepsilon_{n e}$	porosity, noneffective ($V_{\text {pne }}$)/ V_{b}	
ϕ_{R}	f_{R}, ε_{R}	porosity of reservoir or formation	
ϕ_{t}	f_{t}, ε_{t}	porosity, total	
Φ	β_{d}	dip, azimuth of	
Φ	f	potential of potential function	various
ψ		dispersion modulus (dispersion factor)	
Ψ		stream function	various
ω		angular frequency (acentric factor)	1/t
Math			
\propto		proportional to	
-		average or mean (overbar)	
$<$		smaller than	
\leq		equal to or smaller than	
>		larger than	
\geq		equal to or larger than	
\sim		asymptotically equal to	
\approx		approximately equal to or is approximated by (usually with functions)	
∇		del (gradient operator)	
∇.		divergence operator	

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
Math			
∇^{2}		Laplacian operator	
∇x		curl	
erf		error function	
erfc		error function, complementary	
lim		limit	
b	γ	intercept	various
E_{n}		Euler's number	
Ei(x)		exponential integral, modified	
		$\lim _{\varepsilon \rightarrow 0+}\left(\int_{-x}^{-\varepsilon} \frac{e^{-t}}{t} \mathrm{~d} t+\int_{\varepsilon}^{\infty} \frac{e^{-t}}{t} \mathrm{~d} t\right), x \text { positive }$	
-Ei(-x)		exponential integral, $\int_{x}^{\infty} \frac{e^{-t}}{t} \mathrm{~d} t, x$ positive	
e^{z}	$\exp z$	exponential function	
F		ratio	
f	F	fraction	
$\mathcal{J}(z)$		imaginary part of complex number z	
$\mathcal{L}(y)$		Laplace transform of $y, \int_{0}^{\infty} y(t) e^{s t} \mathrm{~d} t$	
ln		logarithm, natural, base e	
\log		logarithm, common, base 10	
$\log _{a}$		logarithm, base a	
m	A	slope	various
N		number, dimensionless	
n		number (of variables, or steps, or increments, etc.)	
$\mathscr{R}(z)$		real part of complex number z	
s		Laplace transform variable	
s		standard deviation of a random variable, estimated	
s^{2}		variance of a random variable, estimated	
\bar{x}		mean value of a random variable, x, estimated	
\vec{x}		vector of x	
$\overrightarrow{\vec{x}}$		tensor of x	
α	β, γ	angle	
γ		Euler's constant $=0.5772$	
Δ		difference ($\Delta x=x_{2}-x_{1}$ or $x_{1}-x_{2}$)	
Δ		difference operator, finite	
μ		mean value of a random variable	
σ		standard deviation of a random variable	
σ^{2}		variance of a random variable	
Φ	f	potential or potential function	various
Ψ		stream function	various

Subscript Symbols in Alphabetical Order

Letter Subscript	Reserve SPE Subscript	Subscript Definition
Greek and Numerical		
ε	E	strain
η		diffusivity
θ		angle, angular, or angular coordinate
λ	M	mobility
ρ		density
ϕ	f, ε	porosity
ϕ	f, ε	porosity data, derived from tool-description subscripts: see individual entries such as "amplitude log," "neutron log,"
0 (zero)	zr	formation 100% saturated with water (used in R_{0} only)
1	p,pri	primary
1,2,3, etc.		location subscripts; usage is secondary to that for representing times or time periods
1,2,3, etc.		numerical subscripts (intended primarily to represent times time periods; available secondarily as location subscripts for other purposes)
1,2,3, etc.		times or time periods
1/2		half
2	s, sec	secondary
∞		conditions for infinite dimensions
English		
a	A	abandonment
a	A, α	acoustic
a		active, activity, or acting
a		altered
a	$A p$	apparent (general)
a	A	atmosphere, atmospheric
$a F$		air/fuel
an	AN	annulus apparent (from log readings: use tool description subscripts)
anh		anhydrite
ani		anisotropic
ar		after royalty
at		after taxes
A	a	amplitude log
A		areal
b	B	band or oil band
b		bank or bank region
b	r, β	base
b		bubble
b	s, bp	bubblepoint (saturation)
b	B, t	bulk (usually with volume, V_{b})
b	B	burned or burning
$b E$		burned in experimental tube run (usually with volume, $V_{b E}$)

Letter Subscript	Reserve SPE Subscript	Subscript Definition
English		
bh	w, BH	bottomhole
bp		bubblepoint or saturation (usually with volume, $V_{b p}$)
$B r$		before royalty
$B t$	B	before taxes
B		turbulence (used with F only, F_{B})
BT	bt	breakthrough
c	C	capillary (usually with capillary pressure, P_{c})
c	cg	casing or casinghead
c		chemical
c	C	compressional wave
c	C	constant
c	C	contact (usually with contact angle, θ_{c})
c		conversion (usually with conversion factor in Newton's laws of motion, g_{c})
c	C	core
c	cr	critical
c	ec	electrochemical
cap		capture
$c b$	CB	cement bond log
cf		casing, flowing (usually with pressure)
cl	cla	clay
cn	cln	clean
cor		corrected
cp		compaction
cs		casing, static (usually with pressure)
C	calc	calculated
C	c	caliper log
C	c	coil
C		components(s)
C		convective
$C B$	$c b$	bond log, cement
$C D$	$c d$	compensated density log
$C L$	cl	chlorine log
CN	cn	compensated neutron log
CO		carbon monoxide
CO_{2}		carbon dioxide
C_{1}		methane
C_{2}		ethane
d		decay
d	δ	delay
d	δ	depleted region, depletion
d		dewpoint
d		differential separation
d		dip (usually with angle, α_{d})
d	D	dispersed
d	s, D	displaced
d		drainage (usually with drainage radius, r_{d})
dh	DH	downhole
dol		dolomite

Letter Subscript	$\begin{aligned} & \text { Reserve } \\ & \text { SPE } \\ & \text { Subscript } \end{aligned}$	Subscript Definition
English		
dy	dty	dirty (clayey, shaly)
D	d	density log
D		dimensionless quantity
D	s, σ	displacing or displacement (efficiency)
DI	di	dual induction log
DLL	$d l f($ script ll)	dual laterolog
DM	dm	diplog, dipmeter
DR	dr	directional survey
DT	$d t$	differential temperature log
Db		displacement from burned portion of in-situ combustion pattern (usually with efficiency, $E_{D b}$)
Dm		dimensionless quantity at condition m
Du		displacement from unburned portion of in-situ combustion pattern (usually with efficiency, $E_{D u}$)
e	o	boundary conditions, external
e	i	cumulative influx (encroachment)
e	E	earth
e		effective (or equivalent)
e	E	electric, electrical
e	E	entry
e	o	external or outer boundary conditions
el	$e \ell($ script el)	electron
eq	EV	equivalent
ext		extrapolated
E	e	electrode
E	EM	empirical
E	est	estimated
E	EX	experimental
E_{g}		experimental value per mole of produced gas (usually with fuel consumption, $m_{E g}$)
EL	el,ES	electrolog, electrical log, electrical survey
$E P$	$e p$	electromagnetic pipe inspection log
f	F	finger or fingering
f	F	flash separation
f	$f l$	fluid
f	fm	formation (rock)
f	R	fraction or fractional
f	F	fracture, fractured, or fracturing
f	F	front, front region, or interface
d		future
f	fm	rock (formation)
F	F	fill-up
F	f	free (usually with gas or gas/oil ration quantities)
F		fuel (usually with fuel properties, such as ρ_{F})
Ff		free fluid
Fi		free value, initial (usually with gas, $G_{F i}$)
F_{P}		cumulative produced free value (usually with gas $G_{F p}$)
G	G	gas

Letter Subscript	Reserve SPE Subscript	Subscript Definition
English		
$g a$		gas at atmospheric conditions
$g b$		gas at bubblepoint conditions
$g D$		gas, dimensionless
gr		grain
gyp		gypsum
G		geometrical
1 s	1st	limestone
L	ℓ (script l)	lateral, lineal
L	ℓ (script l)	lateral (resistivity log)
L	ℓ (script l)	liquid or liquid phase
L_{p}		cumulative produced liquid (usually with condensate, $G_{L p}$)
LL	$\ell \ell$ (script $l l)$	laterolog (add further tool configuration subscripts as needed)
LLD	$\ell \ell$ (script $l l$)	deep laterolog
LLS	$\ell \ell s$ (script ll)	shallow laterolog
LOG	\log	\log
L_{p}		liquid produced, cumulative (usually with condensate, $G_{L p}$)
$L P$	ℓp (script l)	light phase
M		mass of fuel (usually with fuel concentration, C_{m})
M		mud
ma		grain (matrix, solids)
ma		matrix [solids except (nonstructural) clay or shale]
max		maximum
mc		mudcake
Mf		mud filtrate
min		minimum
M	z,m	mixture
M		molal (usually with volume, V_{M})
M	m	M th period or interval
M	z,m	slurry ("mixture")
ML	$m \ell($ script l)	contact log, microlog, minilog
MLL	$m \ell \ell$ (script $l l$)	microlaterolog
n		net
n		normal
n	r, R	normalized (fractional or relative)
ne		noneffective
nw	NW	nonwetting
N	n	neutron
N	n	neutron log
N	n	normal (resistivity) \log (add numerical spacing to subscript N; $\text { e.g., } N 16 \text {) }$
N_{2}		nitrogen
NA	na	neutron activation log
NE	ne	neutron log, epithermal
NF	$n f$	neutron log, fast
$N L$	$n \ell$ (script l)	neutron lifetime log, TDT
NM	nm	nuclear magnetism log
NT	$n t$	neutron log, thermal
o	N	oil (except when used with resistivity)

Letter Subscript	Reserve SPE Subscript	Subscript Definition
English $o b$		oil at bubblepoint conditions (usually with formation volume factor, $B_{o b}$)
$o b$		oil from burned volume (usually with displacement ratio, $\delta_{o b}$)
$o D$		oil, dimensionless
$o g$		oil in gas cap (usually with saturation, $S_{o g}$)
ou		oil from unburned volume (usually with displacement ratio, $\delta_{\text {ou }}$)
O_{2}		oxygen
p		particle (usually with diameter, d_{p})
p	P	pore (usually with volume, V_{p})
P		present
p	P	produced
p		produced, cumulative
p	P	production period (usually with time, t_{p})
\underline{p}		pseudo
\bar{p}		pressure, mean or average
$p c$		pseudocritical
$p D$		pore value, dimensionless (usually with volume, $V_{p D}$)
$p D$		pseudodimensionless
$p E$		produced in experiment
pj		produced component j (usually with moles, $n_{p j}$)
po		payout
pr		pseudoreduced
$p S P$		pseudo-SP
$p \nu$		present value
P		pattern (usually with pattern efficiency, E_{p})
P		phase or phases
P	p	proximity log
r	R	radius, radial, or radial distance
r		reduced
r	b, ρ	reference
r	R	relative
r	R	residual
R		rate
R		ratio
R		recovery (usually with recovery efficiency, E_{R})
R	r	reservoir
R		resistivity
R	r, ρ	resistivity log
$R b$		reservoir rock, burned
$R u$		reservoir rock, unburned
Re		Reynolds (used with Reynolds number only, $N_{\text {Re }}$)
s	d	damage or damaged (includes "skin" conditions)
s		formation, surrounding
s		gas/oil ratio, solution
s	S, σ	segregation (usually with segregation rate, q_{s})
s	τ	shear
S	τ	shear wave
s	S	skin (stimulation or damage)
s	σ	slip or slippage

Reserve

SPE

Letter Subscript	Subscript	Subscript Definition
English		
s	σ	solid (usually with volume or density)
s		solution (usually with gas/oil ratios)
s		spacing
s		specific (usually with J and I)
s	S	stabilization (usually with time)
s	S	steam or steam zone
s	S	stimulation (includes "skin" conditions)
s	σ	surface
s		surrounding formation
s	S, σ	swept or swept region
s	σ	system
$s b$		solution at bubblepoint conditions (usually with gas/oil ratio, $R_{s b}$)
sc		scattered, scattering
sc	σ	standard conditions
sd	sa	sand
$s E$		solids in experiment
sh	sha	shale
$s i$		solution, initial (usually with gas/oil ratio, $R_{s i}$)
sl	slt	silt
sp		separator conditions
$s p$		single payment
ss	sst	sandstone
st		stock-tank conditions
st	s	structural
sw		solution in water (usually with gas solubility in water, $R_{s w}$)
S	SW	sidewall
S	s, σ	storage or storage capacity
\bar{S}	$\bar{s}, \bar{\rho}$	saturation, mean or average
SN	$s n$	neutron log, sidewall
SP	$s p$	self potential
SSP		spontaneous self potential
SV	sv	sonic, velocity, or acoustic log
SWN	swn	sidewall neutron log
t	T	gross (total)
t	T	total
t	T	treatment or treating
t	tr	true (electrical logging) (opposed to apparent)
t	tg	tubing or tubinghead
$t D$		time, dimensionless
$t f$		tubing flowing (usually with pressure)
$t i$		total initial in place in reservoir
$t s$		tubing, static (usually with pressure)
T	h, θ	temperature
T	t, h	temperature log
T	t	tool, sonde
T	t	transmissibility
TV	tv	televiewer log, borehole
u		unburned

Letter Subscript	Reserve SPE Subscript	Subscript Definition
English		
u	U	unit
u	U	unswept or unswept region
u	U	upper
$u l$	a	ultimate
v	V	vaporization, vapor, or vapor phase
v	V	velocity
V	v	vertical
V	v	volume or volumetric
$V b$		volumetric or burned portion of in-situ combustion pattern (usually with efficiency, $E_{V b}$)
$V D$	$v d$	microseismogram log, signature log, variable density log
w	W	water
w		well conditions
w	W	wetting
wa		wellbore, apparent (usually with wellbore radius, $r_{w a}$)
$w b$		water from burned volume (usually with displacement ratio, $\delta_{w b}$)
$w D$		water, dimensionless
$w f$		bottomhole, flowing (usually with pressure or time)
$w f$	f	well, flowing conditions (usually with time)
$w F$		water/fuel
$w g$		water in gas cap (usually with saturation, $S_{w g}$)
$w g$		wet gas (usually with composition or content, $C_{w g}$)
wgp		wet gas produced
wh	th	wellhead
wo		water/oil (usually with instantaneous producing water/oil ratio, $F_{\text {wo }}$)
wop		water/oil, produced (cumulative) (usually with cumulative water/oil ratio, $F_{\text {wop }}$)
ws		static bottomhole (usually with pressure or time)
ws	s	well, static, or shut-in conditions (usually with time)
W	w	weight
xo		flushed zone
Y		Young's modulus, refers to
z		conductive liquids in invaded zone
z		zone, conductive invaded

SI Metric Conversion Factors

The following conversion factors are taken from the SPE Metric Standard. The complete standard can be found at www.SPE.org/spe-site/spe/spe/papers/authors/Metric_Standard.pdf.

ALPHABETICAL LIST OF UNITS (symbols of SI units given in parentheses)

To Convert From	To	Multiply By**	
abampere	ampere (A)	1.0*	E+01
abcoulomb	coulomb (C)	1.0*	E+01
abfarad	farad (F)	1.0*	E+09
abhenry	henry (H)	1.0*	E-09
abmho	Siemens (S)	1.0*	E+09
abohm	ohm (Ω)	1.0*	E-09
abvolt	volt (V)	1.0*	E-08
acre-foot (U.S. survey) ${ }^{(1)}$	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	1.233489	E+03
acre (U.S. survey) ${ }^{(1)}$	meter $^{2}\left(\mathrm{~m}^{2}\right)$	4.046873	E+03
ampere hour	coulomb (C)	3.6*	E+03
are	meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$	1.0*	E+02
angstrom	meter (m)	1.0*	E-10
astronomical unit	meter (m)	1.495979	E+11
atmosphere (standard)	pascal (Pa)	$1.013250 *$	E+05
atmosphere (technical $=1 \mathrm{kgf} / \mathrm{cm}^{2}$)	pascal (Pa)	9.806 650*	E+04
bar	pascal (Pa)	1.0*	E+05
barn	meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$	1.0*	E-28
barrel (for petroleum, 42 gal)	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	1.589873	E-01
board foot	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	2.359737	E-03
British thermal unit (International Table) ${ }^{(2)}$	joule (J)	1.055056	E+03
British thermal unit (mean)	joule (J)	1.05587	E+03
British thermal unit (thermochemical)	joule (J)	1.054350	E+03
British thermal unit ($39^{\circ} \mathrm{F}$)	joule (J)	1.05967	E+03
British thermal unit ($59^{\circ} \mathrm{F}$)	joule (J)	1.05480	E+03
British thermal unit ($60^{\circ} \mathrm{F}$)	joule (J)	1.05468	E+03
Btu (International Table)-ft/(hr- $\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$) (thermal conductivity)	watt per meter Kelvin $[\mathrm{W} /(\mathrm{m}-\mathrm{K})]$	1.730735	E+00
Btu (thermochemical)- $\mathrm{ft} /\left(\mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}\right)$ (thermal conductivity)	watt per meter Kelvin $[\mathrm{W} /(\mathrm{m}-\mathrm{K})]$	1.729577	E +00
Btu (International Table)-in./(hr- $\left.\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}\right)$ (thermal conductivity)	watt per meter Kelvin [W/(m-K)]	1.442279	E-01
Btu (thermochemical)-in./(hr-ft $\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$) (thermal conductivity)	watt per meter Kelvin [W/(m-K)]	1.441314	E-01
Btu (International Table)-in./(s- $\left.\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}\right)$ (thermal conductivity)	watt per meter Kelvin [W/(m-K)]	5.192204	E+02

[^1]> 1 league $=3$ miles (exactly)
> 1 rod $=161 / 2 \mathrm{ft}$ (exactly)
> 1 chain $=66 \mathrm{ft}$ (exactly) 1 section $=1$ sq mile
> 1 township $=36$ sq miles

[^2]| To Convert From | To | Multiply By** | |
| :---: | :---: | :---: | :---: |
| Btu (thermochemical)-in./(s-ft $\left.{ }^{2}-{ }^{\circ} \mathrm{F}\right)$ (thermal conductivity) | watt per meter Kelvin [W/(m-K)] | 5.188732 | $\mathrm{E}+02$ |
| Btu (International Table)/hr | watt (W) | 2.930711 | E-01 |
| Btu (thermochemical)/hr | watt (W) | 2.928751 | E-01 |
| Btu (thermochemical)/min | watt (W) | 1.757250 | E+01 |
| Btu (thermochemical)/s | watt (W) | 1.054350 | $\mathrm{E}+03$ |
| Btu (International Table) $/ \mathrm{ft}^{2}$ | joule per meter ${ }^{2}\left(\mathrm{~J} / \mathrm{m}^{2}\right)$ | 1.135653 | $\mathrm{E}+04$ |
| Btu (thermochemical)/ ft^{2} | joule per meter ${ }^{2}\left(\mathrm{~J} / \mathrm{m}^{2}\right)$ | 1.134893 | $\mathrm{E}+04$ |
| Btu (thermochemical)/($\mathrm{ft}^{2}-\mathrm{hr}$) | watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ | 3.152481 | $\mathrm{E}+00$ |
| Btu (thermochemical)/(ft^{2}-min) | watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ | 1.891489 | $\mathrm{E}+02$ |
| Btu (thermochemical)/($\left.\mathrm{ft}^{2}-\mathrm{s}\right)$ | watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ | 1.134893 | E+04 |
| Btu (thermochemical)/(in. ${ }^{2}-\mathrm{s}$) | watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ | 1.634246 | E+06 |
| Btu (International Table)/(hr-ft $\left.{ }^{2}-{ }^{\circ} \mathrm{F}\right)$ (thermal conductance) | watt per meter ${ }^{2}$ kelvin $\left[\mathrm{W} /\left(\mathrm{m}^{2}-\mathrm{K}\right)\right]$ | 5.678263 | $\mathrm{E}+00$ |
| Btu (thermochemical)/(hr- $\left.-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}\right)$ (thermal conductance) | watt per meter ${ }^{2}$ kelvin [W/(m²-K)] | 5.674466 | $\mathrm{E}+00$ |
| Btu (International Table)/(s-ft $\left.{ }^{2}-{ }^{\circ} \mathrm{F}\right)$ | watt per meter ${ }^{2}$ kelvin [W/(m $\left.\left.{ }^{2}-\mathrm{K}\right)\right]$ | 2.044175 | E +04 |
| Btu (thermochemical)/(s-ft $\left.{ }^{2}-{ }^{\circ} \mathrm{F}\right)$ | watt per meter ${ }^{2}$ kelvin $\left[\mathrm{W} /\left(\mathrm{m}^{2}-\mathrm{K}\right)\right]$ | 2.042808 | $\mathrm{E}+04$ |
| Btu (International Table)/lbm | joule per kilogram (J / kg) | 2.326* | $\mathrm{E}+03$ |
| Btu (thermochemical)/lbm | joule per kilogram (J / kg) | 2.324444 | $\mathrm{E}+03$ |
| Btu (International Table)/(lbm- $\left.{ }^{\circ} \mathrm{F}\right)$ (heat capacity) | joule per kilogram Kelvin [J/(kg-K)] | 4.186 8* * | $\mathrm{E}+03$ |
| Btu (thermochemical)/(lbm- ${ }^{\circ} \mathrm{F}$) (heat capacity) | joule per kilogram Kelvin [J/(kg-K)] | 4.184000 | $\mathrm{E}+03$ |
| bushel (U.S.) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 3.523907 | E-02 |
| caliber (inch) | meter (m) | 2.54* | E-02 |
| calorie (International Table) | joule (J) | 4.186 8* * | $\mathrm{E}+00$ |
| calorie (mean) | joule (J) | 4.19002 | $\mathrm{E}+00$ |
| calorie (thermochemical) | joule (J) | 4.184* | $\mathrm{E}+00$ |
| calorie ($15^{\circ} \mathrm{C}$) | joule (J) | 4.18580 | $\mathrm{E}+00$ |
| calorie $\left(20^{\circ} \mathrm{C}\right)$ | joule (J) | 4.18190 | E+00 |
| calorie (kilogram, International Table) | joule (J) | 4.186 8* * | $\mathrm{E}+03$ |
| calorie (kilogram, mean) | joule (J) | 4.19002 | E+03 |
| calorie (kilogram, thermochemical) | joule (J) | 4.185* | $\mathrm{E}+03$ |
| cal (thermochemical)/ cm^{2} | joule per meter ${ }^{2}\left(\mathrm{~J} / \mathrm{m}^{2}\right)$ | 4.184* | $\mathrm{E}+04$ |
| cal (International Table)/g | joule per kilogram (J / kg) | 4.184* | $\mathrm{E}+03$ |
| cal (International Table)/(g- $\left.{ }^{\circ} \mathrm{C}\right)$ | joule per kilogram
 kelvin [J/(kg-K)] | 4.186 8* * | E+03 |
| cal (thermochemical)/(g- ${ }^{\circ} \mathrm{C}$) | joule per kilogram
 Kelvin [J/(kg-K)] | 4.184* | E+03 |
| cal (thermochemical)/min | watt (W) | 6.973333 | E-02 |
| cal (thermochemical)/s | watt (W) | 4.184* | $\mathrm{E}+04$ |
| cal (thermochemical)/(cm^{2}-min) | watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ | 6.973333 | $\mathrm{E}+02$ |
| cal (thermochemical)/($\mathrm{cm}^{2}-\mathrm{s}$) | watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$ | 4.184* | E+04 |
| cal (thermochemical)/(s- ${ }^{\circ} \mathrm{C}$) | watt per meter kelvin [W/(m-K)] | 4.184* | E+02 |
| capture unit (c.u. $=10^{-3} \mathrm{~cm}^{-1}$) | per meter (m^{-1}) | 1.0* | E-01 |
| carat (metric) | kilogram (kg) | 2.0* | E-04 |
| centimeter of mercury ($0^{\circ} \mathrm{C}$) | pascal (Pa) | 1.33322 | $\mathrm{E}+03$ |
| centimeter of water ($4{ }^{\circ} \mathrm{C}$) | pascal (Pa) | 9.80638 | E+01 |
| centipoises | pascal second ($\mathrm{Pa} \cdot \mathrm{s}$) | 1.0* | E-03 |

To Convert From	To	Multiply By**	
centistrokes	meter ${ }^{2}$ per second ($\mathrm{m}^{2} / \mathrm{s}$)	1.0*	E-06
circular mil	meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$	5.067075	E-10
cio	kelvin meter ${ }^{2}$ per watt $\left[\mathrm{K}-\mathrm{m}^{2} / \mathrm{W}\right]$	2.003712	E-01
cup	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	2.365882	E-04
curie	becquerel (Bq)	3.7*	E+10
cycle per second	hertz (Hz)	1.0*	E+00
day (mean solar)	second (s)	8.640000	E+04
day (sidereal)	second (s)	8.616409	E+04
degree (angle)	radian (rad)	1.745329	E-02
degree Celsius	kelvin (K)	$T_{\mathrm{K}}=\mathrm{T}^{\text {c }}$ + +2.73 .15	
degree centigrade (see degree Celsius)			
degree Fahrenheit	degree Celsius	$T^{\circ} \mathrm{C}=\left(T_{\mathrm{P}_{\mathrm{F}}}-32\right) / 1.8$	
degree Fahrenheit	kelvin (K)	$T_{\mathrm{K}}=\left(T_{\mathrm{F}}+459.67\right) / 1.8$	
degree Rankine	Kelvin (K)	$T_{\mathrm{K}}=T_{\mathrm{F}} / 1.8$	
${ }^{\circ} \mathrm{F}-\mathrm{hr}-\mathrm{ft}^{2} / \mathrm{Btu}$ (International Table) (thermal resistance)	kelvin meter ${ }^{2}$ per watt $\left[\left(\mathrm{K}-\mathrm{m}^{2}\right) / \mathrm{W}\right]$	1.781102	E-01
${ }^{\circ} \mathrm{F}-\mathrm{hr}-\mathrm{ft}^{2} / \mathrm{Btu}$ (thermochemical) (thermal resistance)	kelvin meter ${ }^{2}$ per watt $\left[\left(\mathrm{K}-\mathrm{m}^{2}\right) / \mathrm{W}\right]$	1.762250	E-01
Denier	kilogram per meter (kg/m)	1.111111	E-07
Dyne	newton (N)	1.0*	E-05
dyne-cm	newton meter ($\mathrm{N} \cdot \mathrm{m}$)	1.0*	E-07
dyne/ cm^{2}	pascal (Pa)	1.0*	E-01
electronvolt	joule (J)	1.60219	E-19
EMU of capacitance	farad (F)	1.0*	E+09
EMU of current	ampere (A)	1.0*	E+01
EMU of electric potential	volt (V)	1.0*	E-08
EMU of inductance	henry (H)	1.0*	E-09
EMU of resistance	ohm (Ω)	1.0*	E-09
ESU of capacitance	farad (F)	1.112650	E-12
ESU of current	ampere (A)	3.3356	E-10
ESU of electric potential	volt (V)	2.9979	E+02
ESU of inductance	henry (H)	8.987554	E+11
ESU of resistance	ohm (Ω)	8.987554	E+11
Erg	joule (J)	1.0*	E-07
$\mathrm{erg} / \mathrm{cm}^{2}-\mathrm{s}$	watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	1.0*	E-03
$\mathrm{erg} / \mathrm{s}$	watt (W)	1.0*	E-07
faraday (based on carbon-12)	coulomb (C)	9.64870	E+04
faraday (chemical)	coulomb (C)	9.64957	E+04
faraday (physical)	coulomb (C)	9.65219	E+04
fathom	meter (m)	1.8288	E+00
fermi (femtometer)	meter (m)	1.0*	E-15
fluid ounce (U.S.)	meter $^{3}(\mathrm{~m})^{3}$	2.957353	E-05
foot	meter (m)	3.048*	E-01
foot (U.S. survey) ${ }^{(1)}$	meter (m)	3.048006	E-01
foot of water ($39.2{ }^{\circ} \mathrm{F}$)	pascal (Pa)	2.98898	E+03
sq ft	meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$	9.290 304*	E-02
$\mathrm{ft}^{2} / \mathrm{hr}$ (thermal diffusivity)	meter ${ }^{2}$ per second ($\mathrm{m}^{2} / \mathrm{s}$)	$2.580640 *$	E-05
$\mathrm{ft}^{2} / \mathrm{s}$	meter ${ }^{2}$ per second ($\mathrm{m}^{2} / \mathrm{s}$)	9.290 304*	E-02
$\mathrm{cu} \mathrm{ft} \mathrm{(volume;} \mathrm{section} \mathrm{modulus)}$	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	2.831685	E-02
$\mathrm{ft}^{3} / \mathrm{min}$	meter ${ }^{3}$ per second ($\mathrm{m}^{3} / \mathrm{s}$)	4.719474	E-04

To Convert From	To	*	
$\mathrm{ft}^{3} / \mathrm{s}$	meter ${ }^{3}$ per second ($\mathrm{m}^{3} / \mathrm{s}$)	2.831685	E-02
ft^{4} (moment of section) ${ }^{(4)}$	meter $^{4}\left(\mathrm{~m}^{4}\right)$	8.630975	E-03
$\mathrm{ft} / \mathrm{hr}$	meter per second (m / s)	8.466667	E-05
$\mathrm{ft} / \mathrm{min}$	meter per second (m / s)	5.080*	E-03
ft / s	meter per second (m / s)	3.048*	E-01
$\mathrm{ft} / \mathrm{s}^{2}$	meter per second ${ }^{2}\left(\mathrm{~ms} / \mathrm{s}^{2}\right)$	3.048*	E-01
footcandle	lux (lx)	1.076391	E+01
footlambert	candela per meter ${ }^{2}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)$	3.426259	$\mathrm{E}+00$
$\mathrm{ft}-\mathrm{lbf}$	ioule (J)	1.355818	$\mathrm{E}+00$
$\mathrm{ft}-\mathrm{lbf} / \mathrm{hr}$	watt (W)	3.766161	E-04
$\mathrm{ft}-\mathrm{lbf} / \mathrm{min}$	watt (W)	2.259697	$\mathrm{E}-02$
$\mathrm{ft}-\mathrm{lbf} / \mathrm{s}$	watt (W)	1.355818	$\mathrm{E}+00$
ft-poundal	joule (J)	4.214011	E-02
free fall, standard (g)	meter per second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	9.806 650*	$\mathrm{E}+00$
$\mathrm{cm} / \mathrm{s}^{2}$	meter per second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	1.0*	E-02
gallon (Canadian liquid)	$\operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right)$	4.546090	E-03
gallon (U.K. liquid)	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	4.546092	E-03
gallon (U.S. dry)	$\operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right)$	4.404884	E-03
gallon (U.S. liquid)	$\operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right)$	3.785412	E-03
gal (U.S. liquid)/day	meter ${ }^{3}$ per second ($\mathrm{m}^{3} / \mathrm{s}$)	4.381264	E-08
gal (U.S. liquid)/min	meter ${ }^{3}$ per second ($\mathrm{m}^{3} / \mathrm{s}$)	6.309020	E-05
(SFC, specific fuel consumption)	meter 3 per joule ($\mathrm{m}^{3} / \mathrm{J}$)	1.410089	E-09
gamma (magnetic field strength)	ampere per meter (A/m)	7.957747	E-04
gamma (magnetic flux density)	tesla (T)	1.0*	E-09
gauss	tesla (T)	1.0*	E-04
gilbert	ampere (A)	7.957747	E-01
gill (U.K.)	meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$	1.420654	E-04
gill (U.S.)	meter $^{3}\left(\mathrm{~m}^{3}\right)$	1.182941	E-04
grad	degree (angular)	9.0*	E-01
grad	radian (rad)	1.570796	E-02
grain (1/7000 lbm avoirdupois)	kilogram (kg)	$6.479891 *$	E-05
grain (lbm avoirdupois/7000)/gal (U.S. liquid)	kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	1.711806	E-02
gram	kilogram (kg)	1.0*	E-03
$\mathrm{g} / \mathrm{cm}^{3}$	kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	1.0*	$\mathrm{E}+03$
gram-force/ cm^{2}	pascal (Pa)	$9.806650 *$	$\mathrm{E}+01$
hectare	meter $^{2}\left(\mathrm{~m}^{2}\right)$	1.0*	$\mathrm{E}+04$
horsepower ($550 \mathrm{ft}-\mathrm{lbf} / \mathrm{s}$)	watt (W)	7.456999	$\mathrm{E}+02$
horsepower (boiler)	watt (W)	9.80950	$\mathrm{E}+03$
horsepower (electric)	watt (W)	7.460*	$\mathrm{E}+02$
horsepower (metric)	watt (W)	7.35499	$\mathrm{E}+02$
horsepower (U.K.)	watt (W)	7.4570	$\mathrm{E}+02$
hour (mean solar)	second (s)	3.600000	$\mathrm{E}+03$
hour (sidereal)	second (s)	3.590170	$\mathrm{E}+03$
hundredweight (long)	kilogram (kg)	5.080235	E+01
hundredweight (short)	kilogram (kg)	4.535924	E+01
inch	meter (m)	2.54*	E-02
inch of mercury ($32^{\circ} \mathrm{F}$)	pascal (Pa)	3.38638	$\mathrm{E}+03$
inch of mercury ($60^{\circ} \mathrm{F}$)	pascal (Pa)	3.37685	$\mathrm{E}+03$
inch of water ($39.2{ }^{\circ} \mathrm{F}$)	pascal (Pa)	2.49082	$\mathrm{E}+02$

[^3]| To Convert From | To | Multiply By** | |
| :---: | :---: | :---: | :---: |
| inch of water ($60^{\circ} \mathrm{F}$) | pascal (Pa) | 2.4884 | E+02 |
| sq in. | meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$ | 6.4516^{*} | E-04 |
| cu in. (volume; section modulus) ${ }^{(3)}$ | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 1.638706 | E-05 |
| in. ${ }^{3} / \mathrm{min}$ | meter ${ }^{3}$ per second ($\mathrm{m}^{3} / \mathrm{s}$) | 2.731177 | E-07 |
| in. ${ }^{4}$ (moment of section) ${ }^{(4)}$ | meter ${ }^{4}$ (m^{4}) | 4.162314 | E-07 |
| in./s | meter per second (m / s) | 2.54* | E-02 |
| in. $/ \mathrm{s}^{2}$ | meter per second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ | 2.54* | E-02 |
| kayser | 1 per meter ($1 / \mathrm{m}$) | 1.0* | E+02 |
| Kelvin | degree Celsius | $T_{\text {© }}{ }_{\text {C }}=T_{\mathrm{K}}-27$ | |
| kilocalorie (International Table) | joule (J) | 4.1868^{*} | E+03 |
| kilocalorie (mean) | joule (J) | 4.19002 | E+03 |
| kilocalorie (thermochemical) | joule (J) | 4.184* | E+03 |
| kilocalorie (thermochemical)/min | watt (W) | 6.973333 | E+01 |
| kilocalorie (thermochemical)/s | watt (W) | 4.184* | E+03 |
| kilogram-force (kgf) | newton (N) | 9.806 65* | E+00 |
| kgf•m | newton meter ($\mathrm{N} \cdot \mathrm{m}$) | 9.806 65* | E+00 |
| $\mathrm{kgf} \cdot \mathrm{s}^{2} / \mathrm{m}$ (mass) | kilogram (kg) | 9.80665^{*} | E+00 |
| $\mathrm{kgf} / \mathrm{cm}^{2}$ | pascal (Pa) | 9.806 65* | E+04 |
| $\mathrm{kg} / \mathrm{m}^{2}$ | pascal (Pa) | 9.806 65* | E+00 |
| $\mathrm{kgf} / \mathrm{mm}^{2}$ | pascal (Pa) | 9.806 65* | E+06 |
| km/h | meter per second (m/s) | 2.777778 | E-01 |
| kilopond | newton (N) | 9.806 65* | E+00 |
| kilowatt-hour (kW-hr) | joule (J) | 3.6* | E+06 |
| kip (1000 lbf) | newton (N) | 4.448222 | E+03 |
| kip/in. ${ }^{2}$ (ksi) | pascal (Pa) | 6.894757 | E+06 |
| knot (international) | meter per second (m/s) | 5.144444 | E-01 |
| lambert | candela per meter ${ }^{2}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)$ | $1 / \pi^{*}$ | E+04 |
| lambert | candela per meter ${ }^{2}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)$ | 3.183099 | E+03 |
| langley | joule per meter ${ }^{2}\left(\mathrm{~J} / \mathrm{m}^{2}\right)$ | 4.184* | E+04 |
| league | meter (m) | (see Footnot | |
| light year | meter (m) | 9.46055 | E+15 |
| liter ${ }^{(5)}$ | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 1.0* | E-03 |
| Maxwell | weber (Wb) | 1.0* | E-08 |
| mho | siemens (S) | 1.0* | E+00 |
| microinch | meter (m) | 2.54* | E-08 |
| microsecond/foot | microsecond ($\mu \mathrm{s} / \mathrm{m}$) | 3.280840 | E+00 |
| micron | meter (m) | 1.0* | E-06 |
| mil | meter (m) | 2.54* | E-05 |
| mile (international) | meter (m) | $1.609344 *$ | E+03 |
| mile (statute) | meter (m) | 1.6093 | E+03 |
| mile (U.S. survey) ${ }^{(1)}$ | meter (m) | 1.609347 | E+03 |
| mile (international nautical) | meter (m) | 1.852* | E+03 |
| mile (U.K. nautical) | meter (m) | 1.853 184* | E+03 |
| mile (U.S. nautical) | meter (m) | 1.852* | E+03 |
| sq mile (international) | $\operatorname{meter}^{2}\left(\mathrm{~m}^{2}\right)$ | 2.589988 | E+06 |
| sq mile (U.S survey) | meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$ | 2.589998 | E+06 |
| mile/hr (international) | meter per second (m / s) | 4.4704^{*} | E-01 |
| mile/hr (international) | kilometer per hour (km/h) | 1.609 344* | E+00 |
| mile/min (international) | meter per second (m/s) | 2.682 24* | E+01 |

[^4]| To Convert From | To | Multiply By** | |
| :---: | :---: | :---: | :---: |
| mile/s (international) | meter per second (m/s) | 1.609 344* | E+03 |
| millibar | pascal (Pa) | 1.0* | E+02 |
| millimeter of mercury ($0^{\circ} \mathrm{C}$) | pascal (Pa) | 1.33322 | E+02 |
| minute (angle) | radian (rad) | 2.908882 | E-04 |
| minute (mean solar) | second (s) | 6.0* | E+01 |
| minute (sidereal) | second (s) | 5.983617 | E+01 |
| month (mean calendar) | second (s) | 2.628000 | E+06 |
| oersted | ampere per meter (A / m) | 7.957747 | E+01 |
| ohm centimeter | ohm meter ($\Omega \cdot \mathrm{m}$) | 1.0* | E-02 |
| ohm circular-mil per ft | ohm millimeter ${ }^{2}$ per meter $\left[\left(\Omega \cdot \mathrm{mm}^{2} / \mathrm{m}\right]\right.$ | 1.66426 | E-03 |
| ounce (avoirdupois) | kilogram (kg) | 2.834952 | E-02 |
| ounce (troy or apothecary) | kilogram (kg) | 3.110348 | E-02 |
| ounce (U.K. fluid) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 2.841307 | E-05 |
| ounce (U.S. fluid) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 2.957353 | E-05 |
| ounce-force | newton (N) | 2.780139 | E-01 |
| ozf-in. | newton meter ($\mathrm{N} \cdot \mathrm{m}$) | 7.061552 | E-03 |
| oz (avoirdupois)/gal (U.K. liquid) | kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | 6.236021 | E+00 |
| oz (avoirdupois)/gal (U.S. liquid) | kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | 6.236021 | E+00 |
| oz (avoirdupois)/in. ${ }^{3}$ | kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | 1.729994 | E+03 |
| oz (avoirdupois)/ ft^{2} | kilogram per meter ${ }^{2}$ $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ | 3.051517 | E-01 |
| oz (avoirdupois) $/ \mathrm{yd}^{2}$ | kilogram per meter ${ }^{2}$ $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ | 3.390575 | E-02 |
| parsec | meter (m) | 3.085678 | E+16 |
| pack (U.S.) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 8.809768 | E-03 |
| pennyweight | kilogram (kg) | 1.555174 | E-03 |
| perm ($\left.{ }^{\circ} \mathrm{C}\right)^{(6)}$ | kilogram per pascal second meter ${ }^{2}$ $\left[\mathrm{kg} /\left(\mathrm{Pa} \cdot \mathrm{s} \cdot \mathrm{m}^{2}\right)\right]$ | 5.72135 | E-11 |
| perm ($\left.23^{\circ} \mathrm{C}\right)^{(6)}$ | kilogram per pascal second meter ${ }^{2}$
 $\left[\mathrm{kg} /\left(\mathrm{Pa} \cdot \mathrm{s} \cdot \mathrm{m}^{2}\right)\right]$ | 5.74525 | E-11 |
| perm-in. $\left(0^{\circ} \mathrm{C}\right)^{(7)}$ | kilogram per pascal second meter $[\mathrm{kg} /(\mathrm{Pa} \cdot \mathrm{s} \cdot \mathrm{m})]$ | 1.45322 | E-12 |
| perm-in. $\left(23^{\circ} \mathrm{C}\right)^{(7)}$ | kilogram per pascal second meter $[\mathrm{km} /(\mathrm{Pa} \cdot \mathrm{s} \cdot \mathrm{m})]$ | 1.45929 | E-12 |
| phot | lumen per meter ${ }^{2}\left(\mathrm{~lm} / \mathrm{m}^{2}\right)$ | 1.0* | E+04 |
| pica (printer's) | meter (m) | 4.217518 | E-03 |
| pint (U.S. dry) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 5.506105 | E-04 |
| pint (U.S. liquid) | meter ${ }^{3}$ (m^{3}) | 4.731765 | E-04 |
| point (printer's) | meter (m) | 3.514 598* | E-04 |
| poise (absolute viscosity) | pascal second (Pa•s) | 1.0* | E-01 |
| pound (lbm avoirdupois) ${ }^{(8)}$ | kilogram (kg) | 4.535924 | E-01 |
| pound (troy or apothecary) | kilogram (kg) | 3.732417 | E-01 |

[^5]| To Convert From | To | | y By** |
| :---: | :---: | :---: | :---: |
| $\mathrm{lbm}-\mathrm{ft}^{2}$ (moment of inertia) | kilogram meter ${ }^{2}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ | 4.214011 | E-02 |
| $\mathrm{lbm}-\mathrm{in}^{2}$ (moment of inertia) | kilogram meter ${ }^{2}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ | 2.926397 | E-04 |
| $\mathrm{lbm} / \mathrm{ft}$-hr | pascal second (Pa•s) | 4.133789 | E-04 |
| $\mathrm{lbm} / \mathrm{ft}-\mathrm{s}$ | pascal second (Pa•s) | 1.488164 | E+00 |
| $\mathrm{lbm} / \mathrm{ft}^{2}$ | kilogram per meter ${ }^{2}$ $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ | 4.882428 | E+00 |
| $\mathrm{lbm} / \mathrm{ft}^{3}$ | kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | 1.601846 | E+01 |
| $\mathrm{lbm} / \mathrm{gal}$ (U.K. liquid) | kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | 9.977633 | E+01 |
| lbm/gal (U.S. liquid) | kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | 1.198264 | E+02 |
| $\mathrm{lbm} / \mathrm{hr}$ | kilogram per second (kg/s) | 1.259979 | E-04 |
| $\mathrm{lbm} / \mathrm{hr}$ | kilogram per joule (kg/J) | 1.689659 | E-07 |
| lbm/(hp-hr)
 (SFC, specific fuel consumption) | | | |
| $\mathrm{lbm} / \mathrm{in} .^{3}$ | kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | 2.767990 | E+04 |
| $\mathrm{lbm} / \mathrm{min}$ | kilogram per second (kg/s) | 7.559873 | E-03 |
| $\mathrm{lbm} / \mathrm{s}$ | kilogram per second (kg/s) | 4.535924 | E-01 |
| $\mathrm{lbm} / \mathrm{yd}^{3}$ | kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | 5.932764 | E-01 |
| poundal | newton (N) | 1.382550 | E-01 |
| poundal/ft ${ }^{2}$ | pascal (Pa) | 1.488164 | E+00 |
| poundal-s/ $/ \mathrm{ft}^{2}$ | pascal second (Pa•s) | 1.488164 | E+00 |
| pound-force (lbf) ${ }^{(9)}$ | newton (N) | 4.448222 | E+00 |
| $\mathrm{lbf}-\mathrm{ft}{ }^{(10)}$ | newton meter ($\mathrm{N} \cdot \mathrm{m}$) | 1.355818 | E+00 |
| lbf-ft ${ }^{(11)}$ | newton meter per meter $[(\mathrm{N} \cdot \mathrm{~m}) / \mathrm{m})]$ | 5.337866 | E+01 |
| lbf-in. ${ }^{(11)}$ | newton meter ($\mathrm{N} \cdot \mathrm{m}$) | 1.129848 | E-01 |
| lbf-in./in. ${ }^{(11)}$ | newton meter per meter $[(\mathrm{N} \cdot \mathrm{~m}) / \mathrm{m})]$ | 4.448222 | E+00 |
| $\mathrm{lbf}-\mathrm{s} / \mathrm{ft}^{2}$ | pascal second (Pa•s) | 4.788026 | E+01 |
| $\mathrm{lbf} / \mathrm{ft}$ | newton per meter (N / m) | 1.459390 | E+01 |
| $\mathrm{lbf} / \mathrm{ft}^{2}$ | pascal (Pa) | 4.788026 | E+01 |
| lbf/in. | newton per meter (N / m) | 1.751268 | E+02 |
| $\mathrm{lbf} / \mathrm{in} .{ }^{2}$ (psi) | pascal (Pa) | 6.894757 | E+03 |
| lbf/lbm (thrust/weight [mass] ratio) | newton per kilogram $(\mathrm{N} / \mathrm{kg})$ | 9.806650 | E+00 |
| quart (U.S. dry) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 1.101221 | E-03 |
| quart (U.S. liquid) | meter ${ }^{3}\left(\mathrm{~m}^{3}\right)$ | 9.463529 | E-04 |
| rad (radiation dose absorbed) | gray (Gy) | 1.0* | E-02 |
| rhe | 1 per pascal second [1/(Pa•s)] | 1.0* | E+01 |
| rod | meter (m) | (see Footnote 1) | |
| roentgen | coulomb per kilogram (C/kg) | 2.58 | E-04 |
| second (angle) | radian (rad) | 4.848137 | E-06 |
| second (sidereal) | second (s) | 9.972696 | E-01 |

[^6]To Convert From
section
shake
slug/(ft-s)
slug $/ \mathrm{ft}^{3}$
statampere
statcoulomb
statfarad
stathenry
statmho
statohm
statvolt
stere
stilb
strokes (kinematic viscosity)
tablespoon
teaspoon
tex
therm
ton (assay)
ton (long, 2.240 lbm)
ton (metric)
ton (nuclear equivalent of TNT)
ton (refrigeration)
ton (register)
ton (short, 2,000 lbm)
ton (long) $/ \mathrm{yd}^{3}$
ton (short)/hr
ton-force ($2,000 \mathrm{lbf}$)
tonne
torr ($\mathrm{mm} \mathrm{Hg}, 0^{\circ} \mathrm{C}$)
township
unit pole
watthour (W-hr)
W•s
W/cm ${ }^{2}$
W/in. ${ }^{2}$
yard
$y d^{2}$
yd^{3}
$\mathrm{yd}^{3} /$ min
year (calendar)
year (sidereal)
year (tropical)

To	Multiply By**	
$\operatorname{meter}^{2}\left(\mathrm{~m}^{2}\right)$	(see Footnote 1)	
second(s)	1.000 000*	E-08
pascal second ($\mathrm{Pa} \cdot \mathrm{s}$)	4.788026	E+01
kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	5.153788	$\mathrm{E}+02$
ampere (A)	3.335640	E-10
coulomb (C)	3.335640	$\mathrm{E}-10$
farad (F)	1.112650	$\mathrm{E}-12$
henry (H)	8.987554	$\mathrm{E}+11$
seimens (S)	1.112650	$\mathrm{E}-12$
ohm (Ω)	8.987554	$\mathrm{E}+11$
volt (V)	2.997925	$\mathrm{E}+02$
meter $^{3}\left(\mathrm{~m}^{3}\right)$	1.0*	$\mathrm{E}+00$
candela per meter ${ }^{2}\left(\mathrm{~cd} / \mathrm{m}^{2}\right)$	1.0*	$\mathrm{E}+04$
meter 2 per second ($\mathrm{m}^{2} / \mathrm{s}$)	1.0*	E-04
$\operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right)$	1.478676	E-05
$\operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right)$	4.928922	E-06
kilogram per meter (kg/m)	1.0*	E-06
joule (J)	1.055056	$\mathrm{E}+08$
kilogram (kg)	2.916667	E-02
kilogram (kg)	1.016047	$\mathrm{E}+03$
kilogram (kg)	1.0*	$\mathrm{E}+03$
joule (J)	4.184	$\mathrm{E}+09^{(12)}$
watt (W)	3.516800	E+03
$\operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right)$	2.831685	$\mathrm{E}+00$
kilogram (kg)	9.071847	E+02
kilogram per meter ${ }^{3}$ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	1.328939	$\mathrm{E}+03$
kilogram per second (kg/s)	2.519958	E-01
newton (N)	8.896444	$\mathrm{E}+03$
kilogram (kg)	1.0	$\mathrm{E}+03$
pascal (Pa)	1.33322	$\mathrm{E}+02$
$\operatorname{meter}^{2}\left(\mathrm{~m}^{2}\right)$	(see Footnote 1)	
weber (Wb)	1.256637	E-07
joule (J)	3.60*	$\mathrm{E}+03$
joule (J)	1.0*	$\mathrm{E}+00$
watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	1.0*	$\mathrm{E}+04$
watt per meter ${ }^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$	1.550003	$\mathrm{E}+03$
meter (m)	9.144	E-01
$\operatorname{meter}^{2}\left(\mathrm{~m}^{2}\right)$	8.361274	E-01
$\operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right)$	7.645549	E-01
meter 3 per second ($\mathrm{m}^{3} / \mathrm{s}$)	1.274258	E-02
second (s)	3.153600	$\mathrm{E}+07$
second (s)	3.155815	$\mathrm{E}+07$
second (s)	3.155693	$\mathrm{E}+07$

[^7]
CONVERSION FACTORS FOR THE VARA*

Location	Value of Vara in Inches	Conversion Factor, Varas to Meters	
Argentina, Paraguay	34.12	8.666	E-01
Cadiz, Chile, Peru	33.37	8.476	E-01
California, except San Francisco	33.3720	8.47649	E-01
San Francisco	33.0	8.38	E-01
Central America	33.87	8.603	E-01
Colombia	31.5	8.00	E-01
Honduras	33.0	8.38	E-01
Mexico		8.380	E-01
Portugal, Brazil	43.0	1.09	E+00
Spain Cuba, Venezuela, Philippine Islands	33.38**	8.479	E-01
Texas,			
26 January 1801 to 27 January 1838	32.8748	8.35020	E-01
27 January 1838 to 17 June 1919, for surveys of state land made for land office	$33^{1 / 3}$	8.466667	E-01
27 January 1838 to 17 June 1919, on private surveys (unless change to $33^{1 / 3}$ by custom arising to dignity of law and overcoming former law)	32.8748	8.35020	E-01
17 June 1919 to present	$33^{1 / 3}$	8.466667	E-01

[^8]
"MEMORY JOGGER"—METRIC UNITS

Customary Unit	$\begin{gathered} \text { "Ballpark" Metric Values } \\ \text { (Do Not Use as Conversion Factors) } \end{gathered}$	
acre	\{ 4000	square meters
	\{ 0.4	hectare
barrel	0.16	cubic meter
British thermal unit	1000	joules
British thermal unit per pound-mass	\{ 2300	joules per kilogram
	\{ 2.3	kilojoules per kilogram
calorie	4	joules
centipoise	1*	millipascal-second
centistokes	1*	square millimeter per second
darcy	1	square micrometer
degree Fahrenheit (temperature difference)	0.5	Kelvin
dyne per centimeter	1*	millinewton per meter
foot	\{ 30	centimeters
	0.3	meter
cubic foot (cu ft)	0.03	cubic meter
cubic foot per pound-mass ($\mathrm{ft}^{3} / \mathrm{lbm}$)	0.06	cubic meter per kilogram
square foot (sq ft)	0.1	square meter
foot per minute	0.3	meter per minute
	(millimeters per second
foot-pound-force	1.4	joules
foot-pound-force per minute	0.02	watt
foot-pound-force per second	1.4	watts
horsepower	750	watts (3/4 kilowatt)
horsepower, boiler	10	kilowatts
inch	2.5	centimeters
kilowatt-hour	3.6*	megajoules
mile	1.6	kilometers
ounce (avoirdupois)	28	grams
ounce (fluid)	30	cubic centimeters
pound-force	4.5	newtons
pound-force per square inch (pressure, psi)	7	kilopascals
pound-mass	0.5	kilogram
pound-mass per cubic foot	16	kilograms per cubic meter
	260	hectares
section	2.6	million square meters
	2.6	square kilometers
ton, long (2240 pounds-mass)	1000	kilograms
ton, metric (tonne)	1000*	kilograms
ton, short	900	kilograms

*Exact equivalents

NOMENCLATURE FOR TABLES 1 AND 2 (see pages 153-170)
Unit

Symbol	Name	Quantity
A	ampere	electric current
a	annum (year)	time
Bq	becquerel	activity (of radionuclides)
bar	bar	pressure
C	coulomb	quantity of electricity
cd	candela	luminous intensity
${ }^{\circ} \mathrm{C}$	degree Celsius	temperature
\bigcirc	degree	plane angle
d	day	time
F	farad	electric capacitance
G_{y}	gray	absorbed dose
g	gram	mass
H	henry	inductance
h	hour	time
Hz	hertz	frequency
ha	hectare	area
J	joule	work, energy
K	kelvin	temperature
kg	kilogram	mass
kn	knot	velocity

base SI unit
allowable (not official SI) unit
derived SI unit $=1 / \mathrm{s}$
allowable (not official SI) unit, $=10^{3} \mathrm{~Pa}$
derived SI unit, $=1 \mathrm{~A} \cdot \mathrm{~s}$
base SI unit
derived SI unit $=1.0 \mathrm{~K}$
allowable (not official SI) unit
allowable (not official SI) unit, $=24$ hours
derived SI unit, $=1 \mathrm{~A} \cdot \mathrm{~s} / \mathrm{V}$
derived SI unit, $=\mathrm{J} / \mathrm{kg}$
allowable (not official SI) unit, $=10^{-3} \mathrm{~kg}$
derived SI unit, $=1 \mathrm{~V} \cdot \mathrm{~s} / \mathrm{A}$
allowable (not official SI) unit, $=3.6 \times 10^{3} \mathrm{~s}$
derived SI unit, $=1 \mathrm{cycle} / \mathrm{s}$
allowable (not official SI) unit, $=10^{4} \mathrm{~m}^{2}$
derived SI unit, $=1 \mathrm{~N} \cdot \mathrm{~m}$
base SI unit
base SI unit
allowable (not official SI) unit, $=5.144444 \times 10^{-1} \mathrm{~m} / \mathrm{s}$
$=1.852 \mathrm{~km} / \mathrm{h}$

L	liter	volume	allowable (not official SI) unit, $=1 \mathrm{dm}^{3}$
1 m	lumen	luminous flux	derived SI unit, $=1 \mathrm{~cd} \cdot \mathrm{sr}$
1 x	lux	illuminance	derived SI unit, $=1 \mathrm{~lm} / \mathrm{m}^{2}$
m	meter	length	base SI unit
min	minute	time	allowable (not official SI) unit
	minute	plane angle	allowable cartography (not official SI) unit
N	newton	force	derived SI unit, $=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
naut. mile	U.S. nautical mile	length	allowable (not official SI) unit, $=1.852 \times 10^{3} \mathrm{~m}$
Ω	ohm	electric resistance	derived SI unit, $=1 \mathrm{~V} / \mathrm{A}$
Pa	pascal	pressure	derived SI unit, $=1 \mathrm{~N} / \mathrm{m}^{2}$
rad	radian	plane angle	supplementary SI unit
S	siemens	electrical conductance	derived SI unit, $=1 \mathrm{~A} / \mathrm{V}$
s	second	time	base SI unit
"	second	plane angle	allowable cartography (not official SI) unit
sr	steradian	solid angle	supplementary SI unit
T	tesla	magnetic flux density	derived SI unit, $=1 \mathrm{~Wb} / \mathrm{m}^{2}$
t	tonne	mass	allowable (not official SI) unit, $=10^{3} \mathrm{~kg}=1 \mathrm{Mg}$
V	volt	electric potential	derived SI unit, $=1 \mathrm{~W} / \mathrm{A}$
W	watt	power	derived SI unit, $=1 \mathrm{~J} / \mathrm{s}$
Wb	weber	magnetic flux	derived SI unit, $=1 \mathrm{~V} \cdot \mathrm{~s}$

TABLE 1—TABLES OF RECOMMENDED SI UNITS

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		$\begin{gathered} \text { SPE } \\ \text { Preferred } \end{gathered}$	Other Allowable				
SPACE,** TIME							
Length	m		naut mile	km		1.852*	E+00
		mile	km		1.609 344*	E+00	
		chain	m		2.011 68*	E+01	
		link	m		2.011 68*	E-01	
		fathom	m		1.8288^{*}	E+00	
		m	m		1.0*	E+00	
		yd	m		9.144*	E-01	
		ft	m		3.048*	E-01	
				cm	3.048*	E+01	
		in.	mm		2.54*	E+01	
				cm	2.54*	E+00	
		cm	mm		1.0*	E+01	
				cm	1.0*	E+00	
		mm	mm		1.0	E+00	
		mil	$\mu \mathrm{m}$		2.54*	E+01	
		micron (μ)	$\mu \mathrm{m}$		1.0*	E+00	
Length/length	m / m	$\mathrm{ft} / \mathrm{mi}$	m / km		1.893939	E-01	
Length/volume	$\mathrm{m} / \mathrm{m}^{3}$	ft/U.S. gal	$\mathrm{m} / \mathrm{m}^{3}$		8.051964	E+01	
		$\mathrm{ft} / \mathrm{ft}^{3}$	$\mathrm{m} / \mathrm{m}^{3}$		1.076391	E+01	
		$\mathrm{ft} / \mathrm{bbl}$			1.917134	E+00	
Length/temperature Area	$\underset{\mathrm{m}^{2}}{\mathrm{~m} / \mathrm{K}}$	$\begin{array}{ll}\text { see "Temperature, Pressure, Vacuum" } \\ \text { sq mile } & \mathrm{km}^{2} \\ \text { section } & \mathrm{km}^{2}\end{array}$					
					2.589988	E+00	
					2.589988	E+00	
				ha	2.589988	E+02	
		acre	m^{2}		4.046856	E+03	
				ha	4.046856	E-01	
		ha	m^{2}		1.0*	E+04	
					8.361274	E-01	
		sq ft	m^{2}		$9.290304 *$	E-02	
				cm^{2}	9.290 304*	E+02	
		sq in.	mm^{2}		6.4516^{*}	E+02	
				cm^{2}	6.451 6*	E+00	
		cm^{2}	mm^{2}		1.0*	E+02	
				cm^{2}	1.0*	E+00	
		mm^{2}	mm^{2}		1.0*	E+00	
Area/volume	$\mathrm{m}^{2} / \mathrm{m}^{3}$	ft^{2}	$\mathrm{m}^{2} / \mathrm{cm}^{3}$		5.699291	E-03	
Area/mass	$\mathrm{m}^{2} / \mathrm{kg}$	cm	$\mathrm{m}^{2} / \mathrm{kg}$			E-01	
			$\mathrm{m}^{2} / \mathrm{g}$		1.0*	E-04	

[^9]TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
SPACE, ** TIME							
Volume, capacity	m^{3}		cubem	km^{3}		4.168182	$\mathrm{E}+00^{(1)}$
		acre-ft	m^{3}		1.233489	E+03	
				ha.m	1.233489	E-01	
		m^{3}	m^{3}		1.0*	E+00	
		cu yd	m^{3}		7.645549	E-01	
		bbl (42 U.S. gal)	m^{3}		1.589873	E-01	
		cu ft	m^{3}		2.831685	E-02	
			dm^{3}	L	2.831685	E+01	
		U.K. gal	m^{3}		4.546092	E-03	
			dm^{3}	L	4.546092	E+00	
		U.S. gal	m^{3}		3.785412	E-03	
			dm^{3}	L	3.785412	E+00	
		liter	dm^{3}	L	1.0*	E+00	
		U.K. qt	dm^{3}	L	1.136523	E+00	
		U.S. qt	dm^{3}	L	9.463529	E-01	
		U.S. pt	dm^{3}	L	4.731765	E-01	
Volume, capacity	m^{3}	U.K. fl oz	cm^{3}		2.841308	E+01	
		U.S. fl oz	cm^{3}		2.957353	E+01	
		cu in.	cm^{3}		1.638706	E+01	
		mL	cm^{3}		1.0*	E+00	
Volume/length (linear displacement)	$\mathrm{m}^{3} / \mathrm{m}$	$\mathrm{bbl} / \mathrm{in}$.	$\mathrm{m}^{3} / \mathrm{m}$		6.259342	E+00	
		bbl/ft	$\mathrm{m}^{3} / \mathrm{m}$		5.216119	E-01	
		$\mathrm{ft}^{3} / \mathrm{ft}$	$\mathrm{m}^{3} / \mathrm{m}$		9.290 304*	E-02	
		U.S. gal/ft	$\mathrm{m}^{3} / \mathrm{m}$		1.241933	E-02	
			$\mathrm{dm}^{3} / \mathrm{m}$	L/m	1.241933	E+01	
Volume/mass Plane angle	$\begin{aligned} & \mathrm{m}^{3} / \mathrm{kg} \\ & \mathrm{rad} \end{aligned}$	see "Density, Specific Volume, Concentration, Dosage"					
		rad	rad		1.0*	E+00	
		$\operatorname{deg}\left({ }^{\circ}\right)$	rad		1.745329	$\mathrm{E}-02{ }^{(2)}$	
				。	1.0*	$\mathrm{E}+00$	
		min (')	rad		2.908882	$\mathrm{E}-04^{(2)}$	
					1.0*	E+00	
		sec (")	rad		4.848137	$\mathrm{E}-06{ }^{(2)}$	
				"	1.0*	E+00	
Solid angle	sr	sr	sr		1.0*	$\mathrm{E}+00$	
Time	S	million years (MY)	Ma		1.0*	$\mathrm{E}+00^{(4)}$	
		yr	a		1.0*	E+00	
		wk	d		7.0*	E+00	
		d	d		1.0*	E+00	
		hr	h		1.0*	E+00	
				min	6.0*	E+01	
		min	s		6.0*	E+01	
				h	1.666667	E-02	
				min	1.0*	E+00	
		s	S		1.0*	E+00	
		millimicrosecond	ns		1.0*	E+00	

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
MASS, AMOUNT OF SUBSTANCE							
Mass	kg		U.K. ton (long ton)	Mg	t	1.016047	$\mathrm{E}+00$
		U.S. ton (short ton)	Mg	t	9.071847	E-01	
		U.K. ton	kg		5.080235	E+01	
		U.S. cwt	kg		4.535924	E+01	
		kg	kg		1.0*	E+00	
		lbm	kg		4.535924	E-01	
		oz (troy)	g		3.110348	E+01	
		oz (av)	g		2.834952	E+01	
		g	g		1.0*	E+00	
		grain	mg		6.479891	E+01	
		mg	mg		1.0*	E+00	
		g	g		1.0*	E+00	
Mass/length	kg/m	see "Mechanics"					
Mass/area	$\mathrm{kg} / \mathrm{m}^{2}$	see "Mechanics"					
Mass/volume	$\mathrm{kg} / \mathrm{m}^{3}$	see "Density, Sp	ific Volume,	Concentratio	Dosage"		
Mass/mass	$\mathrm{kg} / \mathrm{kg}$	see "Density, Sp	ific Volume,	Concentratio	Dosage"		
Amount of substance	mol	lbm mol	kmol		4.535924	E-01	
		gmol	kmol		1.0*	E-03	
		std m^{3} ($0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$)	kmol		4.46158	$\underset{(3,13)}{\mathrm{E}-02}$	
		std m ${ }^{3}$ ($15^{\circ} \mathrm{C}, 1 \mathrm{~atm}$)	kmol		4.22932	$\underset{(3,13)}{\mathrm{E}-02}$	
		std ft^{3} ($60^{\circ} \mathrm{F}, 1 \mathrm{~atm}$)	kmol		1.1953	$\underset{(3,13)}{\mathrm{E}-03}$	

CALORIFIC VALUE, HEAT, ENTROPY, HEAT CAPACITY

Calorific value (mass basis)	J/kg	Btu/bm	MJ/kg		2.326	E-03
			kJ/kg	J/g	2.326	E+00
				(kW•h)/kg	6.461112	E-04
		$\mathrm{cal} / \mathrm{g}$	kJ/kg	J/g	4.184*	E+00
		cal/lbm	J/kg		9.224141	E +00
Calorific value (mole basis)	J/mol	$\mathrm{kcal} / \mathrm{g} \mathrm{mol}$	kJ/kmol		4.184*	$\mathrm{C}+03{ }^{(13)}$
		Btu/lbm mol	$\mathrm{MJ} / \mathrm{kmol}$		2.326	$\mathrm{E}-03{ }^{(13)}$
			kJ/kmol		2.326	$\mathrm{E}+00^{(13)}$

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
CALORIFIC VALUE, HEAT, ENTROPY, HEAT CAPACITY							
Calorific value (volume basissolids and liquids)	$\mathrm{J} / \mathrm{m}^{3}$		therm/U.K. gal	$\mathrm{MJ} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{dm}^{3}$	2.32080	E+04
			$\mathrm{kJ} / \mathrm{m}^{3}$		2.32080	E+07	
				(kW•h)/dm ${ }^{3}$	6.446660	E+00	
		Btu/U.S. gal	$\mathrm{MJ} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{dm}^{3}$	2.787163	E-01	
			$\mathrm{kJ} / \mathrm{m}^{3}$		2.787163	E+02	
				(kW h)/ m^{3}	7.742119	E-02	
		Btu/U.K. gal	$\mathrm{MJ} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{dm}^{3}$	2.3208	E-01	
			$\mathrm{kJ} / \mathrm{m}^{3}$		2.3208	E+02	
				$(\mathrm{kW} \cdot \mathrm{h}) / \mathrm{m}^{3}$	6.446660	E-02	
		Btu/ft ${ }^{3}$	$\mathrm{MJ} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{dm}^{3}$	3.725895	E-02	
			$\mathrm{kJ} / \mathrm{m}^{3}$		3.725895	E+01	
				$(\mathrm{kW} \cdot \mathrm{h}) / \mathrm{m}^{3}$	1.034971	E-02	
		$\mathrm{kcal} / \mathrm{m}^{3}$	$\mathrm{MJ} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{dm}^{3}$	4.184*	E-03	
			$\mathrm{kJ} / \mathrm{m}^{3}$		4.184*	E-03	
		$\mathrm{cal} / \mathrm{mL}$	$\mathrm{MJ} / \mathrm{m}^{3}$		4.184*	E+00	
		ft-lbf/U.S. gal	$\mathrm{kJ} / \mathrm{m}^{3}$		3.581692	E-01	
Calorific value (volume basisgases)	$\mathrm{J} / \mathrm{m}^{3}$		$\mathrm{kJ}^{3} / \mathrm{m}$	$\mathrm{J} / \mathrm{dm}^{3}$	4.184*	E+03	
		$\mathrm{kcal} / \mathrm{m}^{3}$	$\mathrm{kJ} / \mathrm{m}^{3}$	$\mathrm{J} / \mathrm{dm}^{3}$	4.184*	E+00	
		$\mathrm{Btu} / \mathrm{ft}^{3}$	$\mathrm{kJ} / \mathrm{m}^{3}$	$\mathrm{J} / \mathrm{dm}^{3}$	3.725895	E+01	
				(kW•h)/m ${ }^{3}$	1.034971	E-02	
Specific entropy	$\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$	$\mathrm{Btu} /\left(\mathrm{lbm}-{ }^{\circ} \mathrm{R}\right)$	$\mathrm{kJ}(\mathrm{kg} \cdot \mathrm{K})$	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	4.186 8* *	E+00	
		$\mathrm{cal} /\left(\mathrm{g}-{ }^{\circ} \mathrm{K}\right)$	$\mathrm{kJ}(\mathrm{kg} \cdot \mathrm{K})$	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	4.184*	$\mathrm{E}+00$	
		$\mathrm{kcal} /\left(\mathrm{kg}-{ }^{\circ} \mathrm{C}\right)$	$\mathrm{kJ}(\mathrm{kg} \cdot \mathrm{K})$	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	4.184*	$\mathrm{E}+00$	
Specific heat capacity (mass basis)	$\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$	kW-hr/(kg- ${ }^{\circ} \mathrm{C}$)	$\mathrm{kJ}(\mathrm{kg} \cdot \mathrm{K})$	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	3.6*	$\mathrm{E}+03$	
		$\mathrm{Btu} /\left(\mathrm{lbm}-{ }^{\circ} \mathrm{F}\right)$	$\mathrm{kJ}(\mathrm{kg} \cdot \mathrm{K})$	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	4.186 8* *	E+00	
		$\mathrm{kcal}\left(\mathrm{kg}-{ }^{\circ} \mathrm{C}\right)$	$\mathrm{kJ}(\mathrm{kg} \cdot \mathrm{K})$	$\mathrm{J}(\mathrm{g} \cdot \mathrm{K})$	4.184*	E+00	
Molar heat	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	Btu/(lbm mol- ${ }^{\circ} \mathrm{F}$)	$\begin{aligned} & \mathrm{kJ} \\ & (\mathrm{kmol} \cdot \mathrm{~K}) \end{aligned}$		4.186 8* *	$\mathrm{E}+00{ }^{(13)}$	
capacity		$\mathrm{cal} /\left(\mathrm{g} \mathrm{mol}-{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \mathrm{kJ} \\ & (\mathrm{kmol} \cdot \mathrm{~K}) \end{aligned}$		4.184*	$\mathrm{E}-00^{(13)}$	

TEMPERATURE, PRESSURE, VACUUM

Temperature	K	${ }^{\circ} \mathrm{R}$	K		5/9	
(absolute)		${ }^{\circ} \mathrm{K}$	K		1.0*	E+00
Temperature	K	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$		(F-32)/1.8	
(traditional)		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$		1.0*	E+00
Temperature	K	${ }^{\circ} \mathrm{F}$	K	${ }^{\circ} \mathrm{C}$	5/9	$\mathrm{E}+00$
(difference)		${ }^{\circ} \mathrm{C}$	K	${ }^{\circ} \mathrm{C}$	1.0*	E+00
Temperature/length (geothermal gradient)	K/m	${ }^{\circ} \mathrm{F} / 100 \mathrm{ft}$	mK / m		1.822689	E+01
Length/temperature (geothermal step)	m / K	$\mathrm{ft}^{\circ} \mathrm{F}$	m / K		5.486 4*	E-01

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
TEMPERATURE, PRESSURE, VACUUM							
Pressure	Pa		$\operatorname{atm}(760 \mathrm{~mm} \mathrm{Hg}$ at	MPa		1.013 25*	E-01
		$0^{\circ} \mathrm{C} \text { or } 14.696$ $\left(\mathrm{lbf} / \mathrm{in} .^{2}\right)$	kPa		1.013 25*	E+02	
				bar	1.013 25*	E+00	
		bar	MPa		1.0*	E-01	
			kPa		1.0*	E+02	
				bar	1.0*	E+00	
		at (technical atm, $\mathrm{kbf} / \mathrm{cm}^{2}$)	MPa		9.806 65*	E-02	
			kPa		9.806 65*	E+01	
				bar	9.806 65*	E-01	
Pressure	Pa	$\mathrm{lbf} / \mathrm{in} .{ }^{2}(\mathrm{psi})$	MPa		6.894757	E-03	
			kPa		6.894757	E+00	
				bar	6.894757	E-02	
		in. $\mathrm{Hg}\left(32^{\circ} \mathrm{F}\right)$	kPa		3.38638	E+00	
		in. $\mathrm{Hg}\left(60^{\circ} \mathrm{F}\right)$	kPa		3.37685	E+00	
		in. $\mathrm{H}_{2} \mathrm{O}\left(39.2{ }^{\circ} \mathrm{F}\right)$	kPa		2.49082	E-01	
		in. $\mathrm{H}_{2} \mathrm{O}\left(60^{\circ} \mathrm{F}\right)$	kPa		2.4884	E-01	
		$\mathrm{Mm} \mathrm{Hg}\left(0^{\circ} \mathrm{C}\right)=$ torr	kPa		1.333224	E-01	
		$\mathrm{Cm} \mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right)$	kPa		9.80638	E-02	
		$\mathrm{lbf} / \mathrm{ft}^{2}$ (psf)	kPa		4.788026	E-02	
		$\mu \mathrm{mHg}\left(0^{\circ} \mathrm{C}\right)$	Pa		1.333224	E-01	
		$\mu \mathrm{bar}$	Pa		1.0*	E-01	
		dyne/cm ${ }^{2}$	Pa		1.0*	E-01	
Vacuum, draft	Pa	in. $\mathrm{Hg}\left(60^{\circ} \mathrm{F}\right)$	kPa		3.37685	E+00	
		in. $\mathrm{H}_{2} \mathrm{O}\left(39.2{ }^{\circ} \mathrm{F}\right)$	kPa		2.49082	E-01	
		$\mathrm{MmHg}\left(0^{\circ} \mathrm{C}\right)=$ torr	kPa		1.333224	E-01	
		$\mathrm{Cm} \mathrm{H}_{2} \mathrm{O}\left(4^{\circ} \mathrm{C}\right)$	kPa		9.80638	E-02	
Liquid heat	m	ft	m		3.048*	E-01	
		in.	mm		2.54*	E+01	
				cm	2.54*	E+00	
Pressure drop/length	Pa / m	psi/ft	kPa/m		2.262059	E+01	
		psi/100 ft	$\mathrm{kPa} / \mathrm{m}$		2.262059	E-01	

DENSITY, SPECIFIC VOLUME, CONCENTRATION, DOSAGE

Density (gases)	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{lbm} / \mathrm{ft}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$		1.601846	E+01
			$\mathrm{g} / \mathrm{m}^{3}$		1.601846	E+04
Density (liquids)	$\mathrm{kg} / \mathrm{m}^{3}$	lbm/U.S. gal	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{g} / \mathrm{cm}^{3}$	1.198264	E+02
					1.198264	E-01
		lbm/U.K. gal	$\mathrm{kg} / \mathrm{m}^{3}$		9.997633	E+01
				$\mathrm{kg} / \mathrm{dm}^{3}$	9.977633	E-02
		$\mathrm{lbm} / \mathrm{ft}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$		1.601846	E+01
				$\mathrm{g} / \mathrm{cm}^{3}$	1.601846	E-02
		$\mathrm{g} / \mathrm{cm}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$		1.0*	E+03
				$\mathrm{kg} / \mathrm{dm}^{3}$	1.0*	E+00
		${ }^{\circ} \mathrm{API}$	$\mathrm{g} / \mathrm{cm}^{3}$		141.5/(131	$\left.{ }^{\circ} \mathrm{API}\right)$

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
DENSITY, SPECIFIC VOLUME, CONCENTRATION, DOSAGE							
Density (solids)	$\mathrm{kg} / \mathrm{m}^{3}$		$\mathrm{lbm} / \mathrm{ft}^{3}$	$\mathrm{kg} / \mathrm{m}^{3}$		1.601846	E+01
Specific volume (gases) Specific volume (liquids)	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{ft}^{3} / \mathrm{lbm}$	$\mathrm{m}^{3} / \mathrm{kg}$		6.242796	E-02	
			$\mathrm{m}^{3} / \mathrm{g}$		6.242796	E-05	
	$\mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{ft}^{3} / \mathrm{lbm}$	$\mathrm{dm}^{3} / \mathrm{kg}$		6.242796	E+01	
		U.K. gal/lbm	$\mathrm{dm}^{3} / \mathrm{kg}$	$\mathrm{cm}^{3} / \mathrm{g}$	1.002242	E+01	
		U.S. gal/lbm	$\mathrm{dm}^{3} / \mathrm{kg}$	$\mathrm{cm}^{3} / \mathrm{g}$	8.345404	E+00	
Specific volume (mole basis)	$\mathrm{ft}^{3} / \mathrm{mol}$	L/g mol	$\mathrm{m}^{3} / \mathrm{kmol}$		1.0*	$\underset{(13)}{\mathrm{E}+00}$	
		$\mathrm{ft}^{3} / \mathrm{lbm} \mathrm{mol}$	$\mathrm{m}^{3} / \mathrm{kmol}$		6.242796	$\mathrm{E}-02$	
Specific volume (clay yield) Yield (shale distillation)	$\mathrm{m}^{3} / \mathrm{kg}$	bbl/U.S. ton	$\mathrm{m}^{3} / \mathrm{t}$		1.752535	E-01	
		bbl/U.K. ton	$\mathrm{m}^{3} / \mathrm{t}$		1.564763	E-01	
	$\mathrm{m}^{3} / \mathrm{kg}$	bbl/U.S. ton	$\mathrm{dm}^{3} / \mathrm{t}$	L/t	1.752535	E+02	
		bbl/U.K. ton	$\mathrm{dm}^{3} / \mathrm{t}$	L/t	1.564763	E+02	
		U.S. gal/U.S. ton	$\mathrm{dm}^{3} / \mathrm{t}$	L/t	4.172702	E+00	
		U.S. gal/U.K. ton	$\mathrm{dm}^{3} / \mathrm{t}$	L/t	3.725627	E+00	
Concentration (mass/mass)	kg/kg	wt\%	kg/kg		1.0*	E-02	
			g / kg		1.0*	E+01	
		wt ppm	$\mathrm{mg} / \mathrm{kg}$		1.0*	E+00	
Concentration (mass/volume)	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{lbm} / \mathrm{bbl}$	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{g} / \mathrm{dm}^{3}$	2.853010	E+00	
		g/U.S. gal	$\mathrm{kg} / \mathrm{m}^{3}$		2.641720	E-01	
		g/U.K. gal	$\mathrm{kg} / \mathrm{m}^{3}$	g / L	2.199692	E-01	
Concentration (mass volume)	$\mathrm{kg} / \mathrm{m}^{3}$	lbm/1,000 U.S. gal	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	1.198264	E+02	
		lbm/1,000 U.K. gal	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	9.977633	E+01	
		grains/U.S. gal	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	1.711806	E+01	
		grains/ft ${ }^{3}$	$\mathrm{mg} / \mathrm{m}^{3}$		2.288352	E+03	
		$\mathrm{lbm} / 1,000 \mathrm{bbl}$	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	2.853010	E+00	
		$\mathrm{mg} /$ U.S. gal	$\mathrm{g} / \mathrm{m}^{3}$	$\mathrm{mg} / \mathrm{dm}^{3}$	2.641720	E-01	
		grains/100 ft^{3}	$\mathrm{mg} / \mathrm{m}^{3}$		2.288352	E+01	
Concentration (volume/volume)	$\mathrm{m}^{3} / \mathrm{m}^{3}$	bbl/bbl	$\mathrm{m}^{3} / \mathrm{m}^{3}$		1.0*	E+00	
		$\mathrm{ft}^{3} / \mathrm{ft}^{3}$	$\mathrm{m}^{3} / \mathrm{m}^{3}$		1.0*	E+00	
		bbl/acre-ft	$\mathrm{m}^{3} / \mathrm{m}^{3}$		1.288923	E-04	
				$\mathrm{m}^{3} / \mathrm{ha} \cdot \mathrm{m}$	1.288923	E +00	
		vol \%	$\mathrm{m}^{3} / \mathrm{m}^{3}$		1.0*	E-02	
		U.K. gal/ft ${ }^{3}$	$\mathrm{dm}^{3} / \mathrm{m}^{3}$	$\mathrm{L} / \mathrm{m}^{3}$	1.605437	E+02	
		U.S. gal/ft ${ }^{3}$	$\mathrm{dm}^{3} / \mathrm{m}^{3}$	$\mathrm{L} / \mathrm{m}^{3}$	1.336806	E+02	
		$\mathrm{mL} /$ U.S. gal	$\mathrm{dm}^{3} / \mathrm{m}^{3}$	$\mathrm{L} / \mathrm{m}^{3}$	2.641720	E-01	
		mL/U.K. gal	$\mathrm{dm}^{3} / \mathrm{m}^{3}$	$\mathrm{L} / \mathrm{m}^{3}$	2.199692	E-01	
		vol ppm	$\mathrm{cm}^{3} / \mathrm{m}^{3}$		1.0*	E+00	
			$\mathrm{dm}^{3} / \mathrm{m}^{3}$	$\mathrm{L} / \mathrm{m}^{3}$	1.0*	E-03	
		U.K. gal/1,000 bbl	$\mathrm{cm}^{3} / \mathrm{m}^{3}$		1.859406	E+01	
		U.S. gal/1,000 bbl	$\mathrm{cm}^{3} / \mathrm{m}^{3}$		2.380952	E+01	
		U.K. pt/1,000 bbl	$\mathrm{cm}^{3} / \mathrm{m}^{3}$		3.574253	E+00	

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
DENSITY, SPECIFIC VOLUME, CONCENTRATION, DOSAGE							
Concentration	$\mathrm{mol} / \mathrm{m}^{3}$		lbm mol/U.S. gal	$\mathrm{kmol} / \mathrm{m}^{3}$		1.198264	E+02
		$\mathrm{lbm} \mathrm{mol} /$ U.K. gal	$\mathrm{kmol} / \mathrm{m}^{3}$		9.977633	E+01	
		$\mathrm{lbm} \mathrm{mol} / \mathrm{ft}^{3}$	$\mathrm{kmol} / \mathrm{m}$		1.601846	E+01	
		$\text { std } \mathrm{ft}^{3}\left(60^{\circ} \mathrm{F},\right.$ $1 \mathrm{~atm}) / \mathrm{bbl}$	$\mathrm{kmol} / \mathrm{m}^{3}$		7.51818	E-03	
Concentration (volume/mole)	$\mathrm{m}^{3} / \mathrm{mol}$	U.S. gal/1,000 std $\mathrm{ft}^{3}\left(60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}\right)$	$\mathrm{dm}^{3} / \mathrm{kmol}$	L/kmol	3.16693	E+00	
		$\mathrm{bbl} /$ million std ft^{3} $\left(60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}\right)$	$\mathrm{dm}^{3} / \mathrm{kmol}$	L/kmol	1.33011	E-01	
FACILITY THROUGHPUT, CAPACITY							
Throughput (mass basis)	kg/s	million lbm/yr	t/a	Mg / a	4.535924	E+02	
		U.K. ton/yr	t/a	Mg/a	1.016047	E+00	
		U.S. ton/yr	t/a	Mg/a	9.071847	E-01	
		U.K. ton/D	t/d	Mg / d	1.016047	E+00	
				$\mathrm{t} / \mathrm{h}, \mathrm{Mg} / \mathrm{h}$	4.233529	E-02	
		U.S. ton/D	t/d		9.071847	E-01	
				t/h, Mg/h	3.779936	E-02	
		U.K. ton/hr	t/h	Mg / h	1.016047	E+00	
		U.S. ton/hr	t/h	Mg / h	9.071847	E-01	
		$\mathrm{lbm} / \mathrm{hr}$	kg/h		4.535924	E-01	
Throughput (volume basis)	$\mathrm{m}^{3} / \mathrm{s}$	$\mathrm{bbl} / \mathrm{D}$	t/a		5.803036	$\mathrm{E}+01^{(7)}$	
(volume basis)				$\mathrm{m}^{3} / \mathrm{d}$	1.589873	E-01	
		$\mathrm{ft}^{3} / \mathrm{D}$	$\mathrm{m}^{3} / \mathrm{h}$		6.624471	E-03	
			$\mathrm{m}^{3} / \mathrm{d}$		2.831685	E-02	
		$\mathrm{bbl}^{3} / \mathrm{hr}$	$\mathrm{m}^{3} / \mathrm{h}$		1.589873	E-01	
			$\mathrm{m}^{3} / \mathrm{h}$		2.831685	E-02	
		$\mathrm{ft}^{3} / \mathrm{h}$ U.K. gal/hr	$\mathrm{m}^{3} / \mathrm{h}$	L/s	4.546092	E-03	
		U.K. gal/hr			1.262803	E-03	
		U.S. gal/hr	$\mathrm{m}^{3} / \mathrm{h}$		3.785412	E-03	
				L/s	1.051503	E-03	
		U.K. gal/min	$\mathrm{m}^{3} / \mathrm{h}$		2.727655	E-01	
				L/s	7.576819	E-02	
		U.S. gal/min	$\mathrm{m}^{3} / \mathrm{h}$		2.271247	E-01	
				L/s	6.309020	E-02	
Throughput (mole basis)	$\mathrm{mol} / \mathrm{s}$	$\mathrm{lbm} \mathrm{mol} / \mathrm{hr}$	$\mathrm{kmol} / \mathrm{h}$		4.535924	E-01	
				kmol/s	1.259979	E-04 ${ }^{(6)}$	

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
FLOW RATE							
Pipeline capacity Flow rate (mass basis)	$\mathrm{m}^{3} / \mathrm{m}$		bbl/mile	$\mathrm{m}^{3} / \mathrm{km}$		9.879013	E-02
	kg/s	U.K. ton/min	kg / s		1.693412	E+01	
		U.S. ton/min	kg/s		1.511974	E+01	
		U.K. ton/hr	kg/s		2.822353	E-01	
		U.S. ton/hr	kg/s		2.519958	E-01	
		U.K. ton/D	kg/s		1.175980	E-02	
		U.S. ton/D	kg/s		1.049982	E-02	
		million lbm/yr	kg/s		5.249912	E+02	
		U.K. ton/yr	kg/s		3.221864	E-05	
		U.S. ton/yr	kg/s		2.876664	E-05	
		$\mathrm{lbm} / \mathrm{s}$	kg/s		4.535924	E-01	
		$\mathrm{lbm} / \mathrm{min}$	kg/s		7.559873	E-03	
		$\mathrm{lbm} / \mathrm{hr}$	kg/s		1.259979	E-04	
Flow rate (volume basis)	$\mathrm{m}^{3} / \mathrm{s}$	bbl/D	$\mathrm{m}^{3} / \mathrm{d}$		1.589873	E-01	
				L/s	1.840131	E-03	
		$\mathrm{ft}^{3} / \mathrm{D}$	$\mathrm{m}^{3} / \mathrm{d}$		2.831685	E-02	
				L/s	3.277413	E-04	
		bbl/hr	$\mathrm{m}^{3} / \mathrm{s}$		4.416314	E-05	
				L/s	4.416314	E-02	
		$\mathrm{ft}^{3} / \mathrm{hr}$	$\mathrm{m}^{3} / \mathrm{s}$		7.865791	E-06	
				L/s	7.865791	E-03	
		U.K. gal/hr	$\mathrm{dm}^{3} / \mathrm{s}$	L/s	1.262803	E-03	
		U.S. gal/hr	$\mathrm{dm}^{3} / \mathrm{s}$	L/s	1.051503	E-03	
		U.K. gal/min	$\mathrm{dm}^{3} / \mathrm{s}$	L/s	7.576820	E-02	
		U.S. gal/min	$\mathrm{dm}^{3} / \mathrm{s}$	L/s	6.309020	E-02	
		$\mathrm{ft}^{3} / \mathrm{min}$	$\mathrm{dm}^{3} / \mathrm{s}$	L/s	4.719474	E-01	
		$\mathrm{ft}^{3} / \mathrm{s}$	$\mathrm{dm}^{3} / \mathrm{s}$	L/s	2.831685	E+01	
Flow rate (mole basis)	$\mathrm{mol} / \mathrm{s}$	$\mathrm{lbm} \mathrm{mol} / \mathrm{s}$	kmol/s		4.535924	$\underset{(13)}{\mathrm{E}-01}$	
		$\mathrm{lbm} \mathrm{mol} / \mathrm{hr}$	kmol/s		1.259979	$\underset{(13)}{\mathrm{E}-04}$	
		million scf/D	kmol/s		1.383449	$\underset{(13)}{\mathrm{E}-02}$	
Flow rate/length (mass basis) Flow rate/length	kg/s $\cdot \mathrm{m}$	$\mathrm{lbm} /(\mathrm{s}-\mathrm{ft})$	$\mathrm{kg} /(\mathrm{s} \cdot \mathrm{m})$		1.488164	E+00	
		$\mathrm{lbm} /(\mathrm{hr}-\mathrm{ft})$	$\mathrm{kg} /(\mathrm{s} \cdot \mathrm{m})$		4.133789	E-04	
	$\mathrm{m}^{2} / \mathrm{s}$	U.K. gal/(min-ft)	$\mathrm{m}^{2} / \mathrm{s}$	$\mathrm{m}^{3} /(\mathrm{s} \cdot \mathrm{m})$	2.485833	E-04	
		U.S. gal/(min-ft)	$\mathrm{m}^{2} / \mathrm{s}$	$\mathrm{m}^{3} /(\mathrm{s} \cdot \mathrm{m})$	2.069888	E-04	
		U.K. gal/(hr-in.)	$\mathrm{m}^{2} / \mathrm{s}$	$\mathrm{m}^{3} /(\mathrm{s} \cdot \mathrm{m})$	4.971667	E-05	
		U.S. gal/(hr-in.)	$\mathrm{m}^{2} / \mathrm{s}$	$\mathrm{m}^{3} /(\mathrm{s} \cdot \mathrm{m})$	4.139776	E-05	
		U.K. gal/(hr-ft)	$\mathrm{m}^{2} / \mathrm{s}$	$\mathrm{m}^{3} /(\mathrm{s} \cdot \mathrm{m})$	4.143055	E-06	
		U.S. gal/(hr-ft)	$\mathrm{m}^{2} / \mathrm{s}$	$\mathrm{m}^{3} /(\mathrm{s} \cdot \mathrm{m})$	3.449814	E-06	
Flow rate/area (mass basis)	$\mathrm{kg} / \mathrm{s} \cdot \mathrm{m}^{2}$	$\mathrm{lbm} /\left(\mathrm{s}-\mathrm{ft}^{2}\right.$)	$\mathrm{kg} / \mathrm{s} \cdot \mathrm{m}^{2}$		4.882428	E+00	
		$\mathrm{lbm} /\left(\mathrm{hr}-\mathrm{ft}^{2}\right)$	$\mathrm{kg} / \mathrm{s} \cdot \mathrm{m}^{2}$		1.356230	E-03	

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
FLOW RATE							
Flow rate/area	m / s		$\mathrm{ft}^{3} /\left(\mathrm{s}-\mathrm{ft}^{2}\right)$	m/s	$\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$	3.048*	E-01
		$\mathrm{ft}^{3} /\left(\mathrm{min}-\mathrm{ft}^{2}\right)$	m/s	$\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$	5.08*	E-03	
		U.K. gal/(hr-in. ${ }^{2}$)	m / s	$\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$	1.957349	E-03	
		U.S. gal/(hr-in. ${ }^{2}$)	m / s	$\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$	1.629833	E-03	
		U.K. gal/(min- ft^{2})	m / s	$\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$	8.155621	E-04	
		U.S. gal/(min- ft^{2})	m / s	$\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$	6.790972	E-04	
		U.K. gal/(hr-ft ${ }^{2}$)	m / s	$\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$	1.359270	E-05	
		U.S. gal/(hr-ft ${ }^{2}$)	m / s	$\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)$	1.131829	E-05	
Flow rate/ pressure drop	$\mathrm{m}^{3} / \mathrm{s} \cdot \mathrm{Pa}$	bbl/(D-psi)	$\mathrm{m}^{3} /(\mathrm{d} \cdot \mathrm{kPa})$		2.305916	E-02	
(productivity							

ENERGY, WORK, POWER

Energy, work	J	quad	MJ		1.055056	$\mathrm{E}+12$
			TJ		1.055056	E+06
			EJ		1.055056	E+00
				MW-h	2.930711	E+08
				GW•h	2.930711	E+05
				TW•h	2.930711	E+02
		therm	MJ		1.055056	E+02
			kJ		1.055056	E+05
				kW•h	2.930711	E+01
		U.S. tonf-mile hp-hr	MJ		1.431744	E+01
			MJ		2.684520	E+00
			kJ		2.684520	E+03
				kW•h	7.456999	E-01
		ch-hr or CV-hr	MJ		2.647796	E+00
			Kj		2.647796	E+03
				kW•h	7.35499	E-01
		kW-hr	MJ		3.6*	E+00
			kJ		3.6*	E+03
		Chu	kJ		1.899101	E+00
				kW•h	5.275280	E-04
		Btu	kJ		1.055056	E+00
				kW•h	2.930711	E-04
		kcal	kJ		4.184*	E+00
		cal	kJ		4.184*	E-03
		$\mathrm{ft}-\mathrm{lbf}$	kJ		1.344818	E-03
		lbf-ft	kJ		1.355818	E-03
		J	kJ		1.0*	E-03
		$\mathrm{lbf}-\mathrm{ft}^{2} / \mathrm{s}^{2}$	kJ		4.214011	E-05
		erg	J		1.0*	E-07

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
ENERGY, WORK, POWER							
Impact energy	J		kgf•m	J		9.806 650*	E+00
		lbf-ft	J		1.355818	E+00	
Work/length Surface energy Specific impact energy Power	$\begin{aligned} & \mathrm{J} / \mathrm{m}^{2} \\ & \mathrm{~J} / \mathrm{m}^{2} \\ & \mathrm{~J} / \mathrm{m}^{2} \end{aligned}$	U.S. tonf-mile/ft	MJ/m		4.697322	E+01	
		$\mathrm{erg} / \mathrm{cm}^{2}$	$\mathrm{mJ} / \mathrm{m}^{2}$		1.0*	E+00	
		$\mathrm{kgf} \cdot \mathrm{m} / \mathrm{cm}^{2}$	$\mathrm{J} / \mathrm{cm}^{2}$		9.806 650*	E-00	
		$\mathrm{lbf} \cdot \mathrm{ft} / \mathrm{in}$. ${ }^{2}$	$\mathrm{J} / \mathrm{cm}^{2}$		2.101522	E-01	
	W	quad/yr	MJ/a		1.055056	E+12	
Power			TJ/a		1.055056	E+06	
			EJ/a		1.055056	E+00	
		erg/a	TW		3.170979	E-27	
			GW		3.170979	E-24	
		million Btu/hr	MW		2.930711	E-01	
		ton of refrigeration	kW		3.516853	E+00	
		Btu/s	kW		1.055056	E+00	
		kW	kW		1.0*	E+00	
		hydraulic horsepower-hhp	kW		7.46043	E-01	
		hp (electric)	kW		7.46*	E-01	
		$\mathrm{hp}(550 \mathrm{ft}-\mathrm{lbf} / \mathrm{s})$	kW		7.456999	E-01	
		ch or CV	kW		7.35499	E-01	
		Btu/min	kW		1.758427	E-02	
		$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}$	kW		1.355818	E-03	
		$\mathrm{kcal} / \mathrm{hr}$	W		1.162222	E+00	
		Btu/hr	W		2.930711	E-01	
		$\mathrm{ft} \cdot \mathrm{lbf} / \mathrm{min}$	W		2.259697	E-02	
Power/area	$\mathrm{W} / \mathrm{m}^{2}$	$\mathrm{Btu} / \mathrm{s} \cdot \mathrm{ft}^{2}$	$\mathrm{kW} / \mathrm{m}^{2}$		1.135653	E+01	
		$\mathrm{cal} / \mathrm{hr} \cdot \mathrm{cm}^{2}$	$\mathrm{kW} / \mathrm{m}^{2}$		1.162222	E-02	
		$\mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft}^{2}$	$\mathrm{kW} / \mathrm{m}^{2}$		3.154591	E-03	
Heat flow unit-hfu (geothermics)		$\mu \mathrm{cal} / \mathrm{s} \cdot \mathrm{cm}^{2}$	$\mathrm{mW} / \mathrm{m}^{2}$		4.184*	E+01	
Heat release rate, mixing power	$\mathrm{W} / \mathrm{m}^{2}$	$\mathrm{hp} / \mathrm{ft}^{3}$	$\mathrm{kW} / \mathrm{m}^{3}$		2.633414	E+01	
		$\mathrm{cal} /\left(\mathrm{hr} \cdot \mathrm{~cm}^{3}\right)$	$\mathrm{kW} / \mathrm{m}^{3}$		1.162222	E+00	
		$\mathrm{Btu} /\left(\mathrm{s} \cdot \mathrm{ft}^{3}\right)$	$\mathrm{kW} / \mathrm{m}^{3}$		3.725895	E+01	
		$\mathrm{Btu} /\left(\mathrm{hr} \cdot \mathrm{ft}^{3}\right)$	$\mathrm{kW} / \mathrm{m}^{3}$		1.034971	E-02	
Heat generation unit-hgu (radioactive rocks)		$\mathrm{cal} /\left(\mathrm{s} \cdot \mathrm{~cm}^{3}\right)$	$\mu \mathrm{W} / \mathrm{m}^{3}$		4.184*	E+12	
Cooling duty (machinery)	W/W	Btu/(bhp-hr)	W/kW		3.930148	E-01	
Specific fuel	kg/J	lbm/(hp-hr)	mg/J	kg/MJ	1.689659	E-01	
consumption (mass basis)				$\mathrm{kg} /(\mathrm{kW} \cdot \mathrm{h})$	6.082774	E-01	
Specific fuel	$\mathrm{m}^{3} / \mathrm{J}$	$\mathrm{m}^{3} /(\mathrm{kW}-\mathrm{hr})$	$\mathrm{dm}^{3} / \mathrm{MJ}$	$\mathrm{mm}^{3} / \mathrm{J}$	2.777778	E+02	
consumption				$\mathrm{dm}^{3} /(\mathrm{kW} \cdot \mathrm{h})$	1.0*	E+03	

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit	Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit	
		SPE Preferred	Other Allowable		
ENERGY, WORK, POWER					
(volume basis)	U.S. gal/(hp-hr)	$\mathrm{dm}^{3} / \mathrm{MJ}$	$\mathrm{mm}^{3} / \mathrm{J}$	1.410089	E+00
			$\mathrm{dm}^{3}(\mathrm{~kW} \cdot \mathrm{~h})$	5.076321	E+00
	U.K. pt/(hp-hr)	$\mathrm{dm}^{3} / \mathrm{MJ}$	$\mathrm{mm}^{3} / \mathrm{J}$	2.116809	E-01
			$\mathrm{dm}^{3} /(\mathrm{kW} \cdot \mathrm{h})$	7.620512	E-01
Fuel consumption $\quad \mathrm{m}^{3} / \mathrm{m}$ (automotive)	U.K. gal/mile	$\mathrm{dm}^{3} / 100 \mathrm{~km}$	L/100 km	2.824811	E+02
	U.S. gal/mile	$\mathrm{dm}^{3} / 100 \mathrm{~km}$	L/100 km	2.352146	E+02
	mile/U.S. gal	$\mathrm{km} / \mathrm{dm}^{3}$	km/L	4.251437	E-01
	mile/U.K. gal	$\mathrm{km} / \mathrm{dm}^{3}$	km/L	3.540060	E-01

MECHANICS

Velocity (linear), speed	m/s	knot	km/h		1.852*	E+00
		mile/hr	km/h		1.609344*	E+00
		m / s	m / s		1.0*	E+00
		ft / s	m / s		3.048*	E-01
				cm/s	3.048*	E+01
				m / ms	3.048*	$\mathrm{E}-04^{(8)}$
		$\mathrm{ft} / \mathrm{min}$	m / s		5.08*	E-03
				cm/s	5.08*	E-01
		$\mathrm{ft} / \mathrm{hr}$	mm/s		8.466667	E-02
				cm/s	8.466667	E-03
		ft / D	mm/s		3.527778	E-03
				m / d	3.048*	E-01
		in.	mm / s		2.54*	E+01
				cm/s	2.54*	E+00
		in./min	mm/s		4.233333	E-01
				cm/s	4.233333	E-02
Velocity (angular)	rad/s	$\mathrm{rev} / \mathrm{min}$	$\mathrm{rad} / \mathrm{s}$		1.047198	E-01
		$\mathrm{rev} / \mathrm{s}$	$\mathrm{rad} / \mathrm{s}$		6.283185	E+00
		degree/min	rad/s		2.908882	E-04
Interval transit time	s / m	s / ft	s / m	$\mu \mathrm{s} / \mathrm{m}$	3.280840	$\mathrm{E}+00^{(9)}$
Corrosion rate	m / s	in./yr (ipy)	mm / a		2.54*	E+01
		$\mathrm{mil} / \mathrm{yr}$	mm / a		2.54*	E-02
Rotational frequency	$\mathrm{rev} / \mathrm{s}$	$\mathrm{rev} / \mathrm{s}$	$\mathrm{rev} / \mathrm{s}$		1.0*	E+00
		$\mathrm{rev} / \mathrm{min}$	$\mathrm{rev} / \mathrm{s}$		1.666667	E-02
		$\mathrm{rev} / \mathrm{min}$	$\mathrm{rad} / \mathrm{s}$		1.047198	E-01
Acceleration (linear)	$\mathrm{m} / \mathrm{s}^{2}$	$\mathrm{ft} / \mathrm{s}^{2}$	$\mathrm{m} / \mathrm{s}^{2}$		3.048*	E-01
				$\mathrm{cm} / \mathrm{s}^{2}$	3.048*	E+01
					1.0*	E-02
Acceleration	$\mathrm{rad} / \mathrm{s}^{2}$	$\mathrm{rad} / \mathrm{s}^{2}$	$\mathrm{rad} / \mathrm{s}^{2}$		1.0*	E+00
(rotational)		rpm/s	$\mathrm{rad} / \mathrm{s}^{2}$		1.047198	E-01
Momentum	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$	$\mathrm{lbm} \cdot \mathrm{ft} / \mathrm{s}$	$\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$		1.382550	E-01

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		$\begin{gathered} \mathrm{SPE} \\ \text { Preferred } \end{gathered}$	Other Allowable				
MECHANICS							
Force	N		U.K. tonf	kN		9.964016	E+00
		U.S. tonf	kN		8.896443	E+00	
		kgf (kp)	N		9.806 650*	E+00	
		lbf	N		4.448222	E+00	
		N	N		1.0*	E+00	
		pdl	mN		1.382550	E+02	
		dyne	mN		1.0*	E-02	
Bending moment, torque	$\mathrm{N} \cdot \mathrm{m}$	U.S. tonf-ft	$\mathrm{kN} \cdot \mathrm{m}$		2.711636	$\mathrm{E}+00{ }^{(10)}$	
		kgf-m	$\mathrm{N} \cdot \mathrm{m}$		9.806 650*	$\mathrm{E}+00{ }^{(10)}$	
		lbf-ft	$\mathrm{N} \cdot \mathrm{m}$		1.355818	$\mathrm{E}+00{ }^{(10)}$	
		lbf-in.	$\mathrm{N} \cdot \mathrm{m}$		1.129848	$\mathrm{E}-01{ }^{(10)}$	
		pdl-ft	$\mathrm{N} \cdot \mathrm{m}$		4.214011	E-02 ${ }^{(10)}$	
Bending moment/ length	$\mathrm{N} \cdot \mathrm{m} / \mathrm{m}$	(lbf-ft)/in.	$(\mathrm{N} \cdot \mathrm{m}) / \mathrm{m}$		5.337856	$\mathrm{E}+01{ }^{(10)}$	
		(kgf-m)/m	($\mathrm{N} \cdot \mathrm{m}$)/m		9.806 650*	$\mathrm{E}+00^{(10)}$	
		(lbf-in.)/in.	($\mathrm{N} \cdot \mathrm{m}$)/m		4.448222	$\mathrm{E}+00{ }^{(10)}$	
Elastic moduli (Young's, shear bulk)	Pa	$\mathrm{lbf} / \mathrm{in} .{ }^{2}$	GPa		6.894757	E-06	
Moment of inertia Moment of section Section modulus	$\begin{aligned} & \mathrm{kg} \cdot \mathrm{~m}^{2} \\ & \mathrm{~m}^{4} \\ & \mathrm{~m}^{3} \end{aligned}$	$\mathrm{lbm}-\mathrm{ft}^{2}$	$\mathrm{kg} \cdot \mathrm{m}^{2}$		4.214011	E-02	
		in. ${ }^{4}$	cm^{4}		4.162314	E+01	
		cu in.	cm^{3}		1.638706	E+01	
		cu ft	cm^{3}		1.638706	E+04	
				mm^{3}	2.831685	E+04	
				m^{3}	2.831685	E-02	
Stress	Pa	U.S. tonf/in. ${ }^{2}$	MPa	$\mathrm{N} / \mathrm{mm}^{2}$	1.378951	E+01	
		kgf/mm ${ }^{2}$	MPa	$\mathrm{N} / \mathrm{mm}^{2}$	$9.806650 *$	E+00	
		U.S. tonf/ft ${ }^{2}$	MPa	$\mathrm{N} / \mathrm{mm}^{2}$	9.576052	E-02	
		$\mathrm{lbf} / \mathrm{in} .{ }^{2}$ (psi)	MPa	$\mathrm{N} / \mathrm{mm}^{2}$	6.894757	E-03	
		$\mathrm{lbf} / \mathrm{ft}^{2}$ (psf)	kPa		4.788026	E-02	
		dyne/cm ${ }^{2}$	Pa		1.0 *	E-01	
Yield point, gel strength (drilling fluid)		$\mathrm{lbf} / 100 \mathrm{ft}^{2}$	Pa		4.788026	E-01	
Mass/length	$\begin{aligned} & \mathrm{kg} / \mathrm{m} \\ & \mathrm{~kg} / \mathrm{m}^{2} \end{aligned}$	lbm/ft	kg/m		1.488164	E+00	
Mass/area structural loading, bearing capacity (mass basis)		U.S. ton/ft ${ }^{2}$	$\mathrm{Mg} / \mathrm{m}^{2}$		9.764855	E+00	
		$\mathrm{lbm} / \mathrm{ft}^{2}$	$\mathrm{kg} / \mathrm{m}^{2}$		4.882428	E+00	
Coefficient of	$\mathrm{m} /(\mathrm{m} \cdot \mathrm{K})$	in./(in. ${ }^{\circ} \mathrm{F}$)	$\mathrm{mm} /(\mathrm{mm} \cdot \mathrm{K})$		5.555556	E-01	

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
			Other Allowable				
TRANSPORT PROPERTIES							
Diffusivity	$\mathrm{m}^{2} / \mathrm{s}$		$\mathrm{ft}^{2} / \mathrm{s}$	$\mathrm{mm}^{2} / \mathrm{s}$		9.290 304*	E+04
		$\mathrm{cm}^{2} / \mathrm{s}$	$\mathrm{mm}^{2} / \mathrm{s}$		1.0*	E+02	
		$\mathrm{ft}^{2} / \mathrm{hr}$	$\mathrm{mm}^{2} / \mathrm{s}$		2.580 64*	E+01	
Thermal resistance	$\left(\mathrm{k} \cdot \mathrm{m}^{2}\right) / \mathrm{W}$	$\left({ }^{\circ} \mathrm{C}-\mathrm{m}^{2} \cdot \mathrm{hr}\right) / \mathrm{kcal}$	$\left(\mathrm{K} \cdot \mathrm{m}^{2}\right) \mathrm{kW}$		8.604208	E+02	
		(${ }^{\left.\mathrm{F}-\mathrm{ft}^{2} \mathrm{hr}\right) / \mathrm{Btu}}$	$\left(\mathrm{K} \cdot \mathrm{m}^{2}\right) \mathrm{kW}$		1.761102	E+02	
Heat flux Thermal conductivity	$\begin{aligned} & \mathrm{W} / \mathrm{m}^{2} \\ & \mathrm{~W} /(\mathrm{m} \cdot \mathrm{~K}) \end{aligned}$	$\mathrm{Btu} /\left(\mathrm{hr}-\mathrm{ft}^{2}\right.$)	kW/m ${ }^{2}$		3.154591	E-03	
		($\mathrm{cal} / \mathrm{s}-\mathrm{cm}^{2}-{ }^{\circ} \mathrm{C} / \mathrm{cm}$)	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$		4.184*	E+02	
		$\mathrm{Btu} /\left(\mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F} / \mathrm{ft}\right)$	W/(m.K)		1.730735	E+00	
				$\mathrm{kJ} \cdot \mathrm{m} /\left(\mathrm{h} \cdot \mathrm{m}^{2} \cdot \mathrm{~K}\right)$	6.230646	E+00	
		$\mathrm{kcal} /\left(\mathrm{hr}-\mathrm{m}^{2}-{ }^{\circ} \mathrm{C} / \mathrm{m}\right)$	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$		1.162222	E+00	
		$\mathrm{Btu} /\left(\mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F} / \mathrm{in} .\right)$	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$		1.442279	E-01	
		$\mathrm{cal} /\left(\mathrm{hr}-\mathrm{cm}^{2}-{ }^{\circ} \mathrm{C} / \mathrm{cm}\right)$	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$		1.162222	E-01	
Heat transfer coefficient	$\mathrm{W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$	$\mathrm{cal} /\left(\mathrm{s}-\mathrm{cm}^{2}{ }^{\circ} \mathrm{C}\right.$)	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		4.184*	E+01	
		$\mathrm{Btu} /\left(\mathrm{s}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		2.044175	E+01	
		$\mathrm{cal} /\left(\mathrm{hr}-\mathrm{cm}^{2}-{ }^{\circ} \mathrm{C}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		1.162222	E-02	
		$\mathrm{Btu} /\left(\mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		5.678263	E-03	
				$\mathrm{kJ}\left(\mathrm{h} \cdot \mathrm{m}^{2} \cdot \mathrm{~K}\right)$	2.044175	E+01	
					5.678263	E-03	
		$\mathrm{kcal} /\left(\mathrm{hr}-\mathrm{m}^{2}-{ }^{\circ} \mathrm{C}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right)$		1.162222	E-03	
Volumetric heat transfer coefficient Surface tension Viscosity (dynamic)	$\mathrm{kW} /\left(\mathrm{m}^{3} \cdot \mathrm{~K}\right)$	$\mathrm{Btu} /\left(\mathrm{s}-\mathrm{ft}^{3}-{ }^{\circ} \mathrm{F}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{3} \cdot \mathrm{~K}\right)$		6.706611	E+01	
		$\mathrm{Btu} /\left(\mathrm{hr-ft}{ }^{3}-{ }^{\circ} \mathrm{F}\right)$	$\mathrm{kW} /\left(\mathrm{m}^{3} \cdot \mathrm{~K}\right)$		1.862947	E-02	
	N/m	dyne/cm	mN / m		1.0*	E+00	
	$\mathrm{Pa} \cdot \mathrm{s}$	($\mathrm{lbf}-\mathrm{s}$)/in. ${ }^{2}$	Pa 's	($\mathrm{N} \cdot \mathrm{s}$) $/ \mathrm{m}^{2}$	6.894757	E+03	
		($\mathrm{lbf}-\mathrm{s}$)/ $/ \mathrm{ft}^{2}$	Pa 's	($\mathrm{N} \cdot \mathrm{s}$) $/ \mathrm{m}^{2}$	4.788026	E+01	
		(kgf-s)/m ${ }^{2}$	Pa 's	($\mathrm{N} \cdot \mathrm{s}$) $/ \mathrm{m}^{2}$	9.806 650*	E+00	
		$\mathrm{lbm} /(\mathrm{ft}-\mathrm{s})$	$\mathrm{Pa} \cdot \mathrm{s}$	$(\mathrm{N} \cdot \mathrm{s}) / \mathrm{m}^{2}$	1.488164	E+00	
		(dyne-s)/ cm^{2}	Pa 's	($\mathrm{N} \cdot \mathrm{s}$) $/ \mathrm{m}^{2}$	1.0*	E-01	
		cp	Pa 's	($\mathrm{N} \cdot \mathrm{s}$) $/ \mathrm{m}^{2}$	1.0*	E-03	
		lbm/(ft-hr)	$\mathrm{Pa} \cdot \mathrm{s}$	($\mathrm{N} \cdot \mathrm{s}$) $/ \mathrm{m}^{2}$	4.133789	E-04	
Viscosity (kinematic)	$\mathrm{m}^{2} / \mathrm{s}$	$\mathrm{ft}^{2} / \mathrm{s}$	$\mathrm{mm}^{2} / \mathrm{s}$		9.290 304*	E+04	
		in. ${ }^{2} / \mathrm{s}$	$\mathrm{mm}^{2} / \mathrm{s}$		6.4516^{*}	E+02	
		$\mathrm{m}^{2} / \mathrm{hr}$	$\mathrm{mm}^{2} / \mathrm{s}$		2.777778	E+02	
		$\mathrm{cm}^{2} / \mathrm{s}$	$\mathrm{mm}^{2} / \mathrm{s}$		1.0*	E+02	
		$\mathrm{ft}^{2} / \mathrm{hr}$	$\mathrm{mm}^{2} / \mathrm{s}$		2.580 64*	E+01	
		cSt	$\mathrm{mm}^{2} / \mathrm{s}$		1.0*	E+00	
Permeability	m^{2}	darcy	$\mu \mathrm{m}^{2}$		9.869233	$\underset{(11)}{\mathrm{E}-01}$	
		millidarcy	$\mu \mathrm{m}^{2}$		9.869233	$\underset{(11)}{\mathrm{E}-04}$	
				$10^{-3} \mu \mathrm{~m}^{2}$	9.869233	$\mathrm{E}-01$	

TABLE 1-TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
ELECTRICITY, MAGNETISM							
Admittance	S		S	S		1.0*	E+00
Capacitance	F	$\mu \mathrm{F}$	$\mu \mathrm{F}$		1.0*	E+00	
Capacity, storage battery	C	A $\cdot \mathrm{hr}$	kC		3.6*	E+00	
Charge density	$\mathrm{C} / \mathrm{m}^{3}$	$\mathrm{C} / \mathrm{mm}^{3}$	$\mathrm{C} / \mathrm{mm}^{3}$		1.0*	E+00	
Conductance	S	S	S		1.0*	E+00	
		Ω (mho)	S		1.0*	E+00	
Conductivity	S/m	S / m	S/m		1.0*	E+00	
		Ω / m	S / m		1.0*	E+00	
		$\mathrm{m} \Omega / \mathrm{m}$	mS / m		1.0*	E+00	
Current density	$\mathrm{A} / \mathrm{m}^{2}$	$\mathrm{A} / \mathrm{mm}^{2}$	$\mathrm{A} / \mathrm{mm}^{2}$		1.0*	E+00	
Displacement	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{C} / \mathrm{cm}^{2}$	$\mathrm{C} / \mathrm{cm}^{2}$		1.0	E+00	
Electric charge	C	C	C		1.0*	E+00	
Electric current	A	A	A		1.0*	E+00	
Electric dipole moment	C.m	C.m	C.m		1.0*	E+00	
Electric field strength	V/m	V/m	V/m		1.0*	E+00	
Electric flux	C	C	C		1.0*	E+00	
Electric polarization	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{C} / \mathrm{m}^{2}$		1.0*	E+00	
Electric potential	V	V	V		1.0*	E+00	
		mV	mV		1.0*	E+00	
Electromagnetic moment	A. m^{2}	A. m^{2}	A. m^{2}		1.0*	E+00	
Electromotive force	V	V	V		1.0*	E+00	
Flux of displacement	C	C	C		1.0*	E+00	
Frequency	Hz	cycles/s	Hz		1.0*	E+00	
Impedance	Ω	Ω	Ω		1.0*	$\mathrm{E}+00$	
Interval transit time	s / m	$\mu \mathrm{s} / \mathrm{ft}$	$\mu \mathrm{s} / \mathrm{m}$		3.280840	E+00	
Linear current density	A/m	A/mm	A / mm		1.0*	E+00	
Magnetic dipole moment	$\mathrm{Wb} \cdot \mathrm{m}$	$\mathrm{Wb} \cdot \mathrm{m}$	$\mathrm{Wb} \cdot \mathrm{m}$		1.0*	E+00	
Magnetic field strength	A/m	A/mm	A/mm		1.0*	E+00	
		oersted	A/m		7.957747	E+01	
		gamma	A/m		7.957747	E-04	
Magnetic flux	Wb	mWb	mWb		1.0*	E+00	
Magnetic flux density	T	mT	mT		1.0*	E+00	
		gauss	T		1.0*	E-04	
Magnetic induction	T	mT	mT		1.0*	E+00	
Magnetic moment	$\mathrm{A} \cdot \mathrm{m}^{2}$	A. m^{2}	A. ${ }^{2}$		1.0*	E+00	

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
ELECTRICITY, MAGNETISM							
Magnetic polarization	T		mT	mT		1.0*	E+00
Magnetic potential difference	A	A	A		1.0*	E+00	
Magnetic vector potential	Wb / m	Wb/m	Wb / m		1		
Magnetization	A/m	A/mm	A/mm		1		
Modulus of admittance	S	S	S		1		
Modulus of impedance	Ω	Ω	Ω		1		
Mutual inductance	H	H	H		1		
Permeability	H/m	$\mu \mathrm{H} / \mathrm{m}$	$\mu \mathrm{H} / \mathrm{m}$		1		
Permeance	H	H	H		1		
Permittivity	F/m	$\mu \mathrm{F} / \mathrm{m}$	$\mu \mathrm{F} / \mathrm{m}$		1		
Potential difference	V	V	V		1		
Quantity of electricity	C	C	C		1		
Reactance	Ω	Ω	Ω		1		
Reluctance	H^{-1}	H^{-1}	H^{-1}		1		
Resistance	Ω	Ω	Ω		1		
Resistivity	$\Omega \cdot \mathrm{m}$	$\Omega \cdot \mathrm{cm}$	$\Omega \cdot \mathrm{cm}$		1		
		$\Omega \cdot \mathrm{m}$	$\Omega \cdot \mathrm{m}$		1	(12)	
Self inductance	H	mH	mH		1		
Surface density of charge	$\mathrm{C} / \mathrm{m}^{2}$	$\mathrm{mC} / \mathrm{m}^{2}$	$\mathrm{mC} / \mathrm{m}^{2}$		1		
Susceptance	S	S	S		1		
Volume density of charge	$\mathrm{C} / \mathrm{m}^{3}$	$\mathrm{C} / \mathrm{mm}^{3}$	$\mathrm{C} / \mathrm{mm}^{3}$		1		

ACOUSTICS, LIGHT, RADIATION

| Absorbed dose | Gy | rad | Gy | 1.0^{*} | $\mathrm{E}-02$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Acoustical energy | J | J | J | 1 | |
| Acoustical intensity | $\mathrm{W} / \mathrm{m}^{2}$ | $\mathrm{~W} / \mathrm{cm}^{2}$ | $\mathrm{~W} / \mathrm{m}^{2}$ | 1.0^{*} | $\mathrm{E}+04$ |
| Acoustical power | W | W | W | 1 | |
| Sound pressure | $\mathrm{N} / \mathrm{m}^{2}$ | $\mathrm{~N} / \mathrm{m}^{2}$ | $\mathrm{~N} / \mathrm{m}^{2}$ | 1 | |
| Illuminance | lx | footcandle | 1 x | 1.076391 | $\mathrm{E}+01$ |
| Illumination | lx | footcandle | 1 x | 1.076391 | $\mathrm{E}+01$ |
| Irradiance | $\mathrm{W} / \mathrm{m}^{2}$ | $\mathrm{~W} / \mathrm{m}^{2}$ | $\mathrm{~W} / \mathrm{m}^{2}$ | 1 | |
| Light exposure | $1 \mathrm{x} \cdot \mathrm{s}$ | footcandle $\cdot \mathrm{s}$ | $1 \mathrm{x} \cdot \mathrm{s}$ | 1.076391 | $\mathrm{E}+01$ |
| Luminance | $\mathrm{cd} / \mathrm{m}^{2}$ | $\mathrm{~cd} / \mathrm{m}^{2}$ | $\mathrm{~cd} / \mathrm{m}^{2}$ | 1 | |
| Luminous efficacy | lm / W | lm / W | $1 \mathrm{~m} / \mathrm{W}$ | 1 | |

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)

TABLE 2-SOME ADDITIONAL APPLICATION STANDARDS

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		SPE Preferred	Other Allowable				
Capillary	Pa		ft (fluid)	m (fluid)		3.048*	E-01
Compressibility of reservoir fluid	Pa^{-1}	psi ${ }^{-1}$	Pa^{-1}		1.450377	E-04	
				kPa^{-1}	1.450377	E-01	
Corrosion allowance	m	in.	mm		2.54*	E+01	
Corrosion rate	m / s	$\mathrm{mil} / \mathrm{yr}$	mm / a		2.54*	E-02	
		(mpy)					
Differential orifice pressure	Pa	in. $\mathrm{H}_{2} \mathrm{O}$	kPa		2.4884	E-01	
		(at $60^{\circ} \mathrm{F}$)		cm $\mathrm{H}_{2} \mathrm{O}$	2.54*	$\mathrm{E}+00$	
Gas-oil ratio	$\mathrm{m}^{3} / \mathrm{m}^{3}$	scf/bbl	"standard"		1.801175	E-01	
			$\mathrm{m}^{3} / \mathrm{m}^{3}$			(1)	
Gas rate	$\mathrm{m}^{3} / \mathrm{s}$	scf/D	"standard"		2.863640	E-02	
			$\mathrm{m}^{3} / \mathrm{d}$				
Geologic time	s	yr	Ma				
Heat (fluid mechanics)	m	ft	m		3.048*	E-01	
				cm	3.048*	E+01	
Heat exchange rate	W	Btu/hr	kW		2.930711	E-04	
				kJ/h	1.055056	E+00	
Mobility	$\mathrm{m}^{2} / \mathrm{Pa} \cdot \mathrm{s}$	d/cp	$\mu \mathrm{m}^{2} / \mathrm{mPa} \cdot \mathrm{s}$		9.869233	E-01	
				$\mu \mathrm{m}^{2} / \mathrm{Pa} \cdot \mathrm{s}$	9.869233	E+02	
Net pay thickness	m	ft	m		3.048*	E-01	
Oil rate	$\mathrm{m}^{3} / \mathrm{s}$	bbl/D	$\mathrm{m}^{3} / \mathrm{d}$		1.589873	E-01	
		short ton/yr	mg / a	ta	9.071847	E-01	
Particle size	m	micron	$\mu \mathrm{m}$		1.0*		
Permeabilitythickness	m^{3}	md-ft	$\mathrm{md} \cdot \mathrm{m}$	$\mu \mathrm{m}^{2} \cdot \mathrm{~m}$	3.008142	E-04	
Pipe diameter (actual)	m	in.	cm		2.54*	E+00	
				mm	2.54*	E+01	
Pressure buildup per cycle	Pa	psi	kPa		6.894757	$\underset{(2)}{\mathrm{E}+00}$	
Productivity index	$\mathrm{m}^{3} / \mathrm{Pa} \cdot \mathrm{s}$	bbl/(psi-D)	$\mathrm{m}^{3}(\mathrm{kPa} \cdot \mathrm{d})$		2.305916	$\underset{(2)}{\mathrm{E}-02}$	
Pumping rate	$\mathrm{m}^{3} / \mathrm{s}$	U.S. gal/min	$\mathrm{m}^{3} / \mathrm{h}$		2.271247	E-01	
				L/s	6.309020	E-02	
Revolutions per minute	rad/s	rpm	rad/s		1.047198	E-01	
				$\mathrm{rad} / \mathrm{m}$	6.283185	E+00	
Recovery/unit volume (oil) Reservoir area	$\mathrm{m}^{3} / \mathrm{m}^{3}$	bbl/(acre-ft)	$\mathrm{m}^{3} / \mathrm{m}^{3}$		1.288931	E-04	
				$\mathrm{m}^{3} / \mathrm{ha} \cdot \mathrm{m}$	1.288931	E+00	
	m^{2}	sq mile	km^{2}		2.589988	E+00	
		acre		ha	4.046856	E-01	

TABLE 2-SOME ADDITIONAL APPLICATION STANDARDS (continued)

Quantity and SI Unit		Customary Unit	Metric Unit		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit		
		$\begin{gathered} \text { SPE } \\ \text { Preferred } \end{gathered}$	Other Allowable				
Reservoir volume	m^{3}		acre-ft	m^{3}	ha.m	1.233482	E+03
		1.233482				E-01	
Specific productivity index	$\mathrm{m}^{3} / \mathrm{Pa} \cdot \mathrm{s} \cdot \mathrm{m}$	bbl/(D-psi-ft)	$\mathrm{m}^{3} /(\mathrm{kPa} \cdot \mathrm{d} \cdot \mathrm{s})$	7.565341		$\underset{(2)}{\mathrm{E}-02}$	
Surface or interfacial tension in reservoir capillaries	N / m	dyne/cm	mN / m		1.0*	E+00	
Torque	$\mathrm{N} \cdot \mathrm{m}$	lbf-ft	$\mathrm{N} \cdot \mathrm{m}$		1.355818	$\underset{(4)}{\mathrm{E}+00}$	
Velocity (fluid flow)	m / s	ft/s	m / s		3.048*	E-01	
Vessel diameter	m						
$1-100 \mathrm{~cm}$		in.	cm		2.54*	E+00	
above 100 cm		ft	m		3.048*	E-01	

*An asterisk indicates the conversion factor is exact using the numbers shown; all subsequent numbers are zeros.

[^0]: Dimensions: $\mathrm{L}=$ length, $\mathrm{m}=$ mass, $\mathrm{q}=$ electrical charge, $\mathrm{t}=$ time, $\mathrm{T}=$ =temperature, $\mathrm{M}=$ money, $\mathrm{and} \mathrm{n}=$ amount of substance.

[^1]: *An asterisk indicates that the conversion factor is exact using the numbers shown; all subsequent number are zeros.
 **See footnote.
 ${ }^{(1)}$ Since 1893, the U.S. basis of length measurement has been derived from metric standards. In 1959, a small refinement was made in the definition of the yard to resolve discrepancies both in this country and abroad, which changed its length from $3600 / 3937 \mathrm{~m}$ to 0.9144 m exactly. This resulted in the new value being shorter by two parts in a million. At the same time, it was decided that any data in feet derived from and published as a result of geodetic surveys within the U.S. would remain with the old standard (1 $\mathrm{ft}=1200 / 3937 \mathrm{~m}$) until further decision. This foot is named the U.S. survey foot. As a result, all U.S. land measurements in U.S. customary units will relate to the meter by the old standard. All the conversion factors in these tables for units referenced to this footnote are based on the U.S. survey foot, rather than the international foot. Conversion factors for the land measure given below may be determined from the following relationships:

[^2]: ${ }^{(2)}$ This value was adopted in 1956. Some of the older International Tables use the value $1.05504 \mathrm{E}+03$. The exact conversion factor is $1.05505585262 * \mathrm{E}+03$.

[^3]: ${ }^{(3)}$ The exact conversion factor is $1.6387064^{*} \mathrm{E}-05$.

[^4]: ${ }^{(4)}$ This sometimes is called the moment of inertia of a plane section about a specified axis.
 ${ }^{(5)}$ In 1964, the General Conference on Weights and Measures adopted the name "liter" as a special name for the cubic decimeter. Prior to this decision, the liter differed slightly (previous value: $1.000028 \mathrm{dm}^{3}$), and in expression of precision volume measurement, this fact must be kept in mind.

[^5]: ${ }^{(6)}$ Not the same as reservoir "perm."
 ${ }^{(7)}$ Not the same dimensions as "millidarcy-foot."
 ${ }^{(8)}$ The exact conversion factor is $4.5359237 * \mathrm{E}-01$.

[^6]: ${ }^{(9)}$ The exact conversion factor is $4.4486152605^{*} \mathrm{E}+00$.
 ${ }^{(10)}$ Torque unit; see text discussion of "Torque and Bending Moment."
 ${ }^{(11)}$ Torque divided by length; see text discussion of "Torque and Bending Moment."

[^7]: ${ }^{(12)}$ Defined (not measured) value.

[^8]: *Per P.G. McElwee (The Texas Vara; available from the General Land Office, State of Texas, Austin, 30 April 1940) it is evident that accurate defined lengths of the vara vary significantly, according to historical data and locality used. For work requiring accurate conversions, the user should check closely into the date and location of the surveys involved, with due regard to what local practice may have been at that time and place.
 **This value quoted from Webster's New International Dictionary.

[^9]: *An asterisk indicates that the conversion factor is exact using the numbers shown; all subsequent number are zeros.
 **Conversion factors for length, area, and volume (and related quantities) in Table 1 are based on the international foot. See Footnote 1 in the Alphabetical List of Units.

